• Exp. Cell Res. · May 1998

    CaMK-II inhibition reduces cyclin D1 levels and enhances the association of p27kip1 with Cdk2 to cause G1 arrest in NIH 3T3 cells.

    • T A Morris, R J DeLorenzo, and R M Tombes.
    • Massey Cancer Center, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0230, USA.
    • Exp. Cell Res. 1998 May 1; 240 (2): 218-27.

    AbstractThe calmodulin-dependent protein kinase-II (CaMK-II) inhibitor KN-93 has been shown to reversibly arrest mouse and human cells in the G1 phase of the cell cycle [Tombes, R. M., Westin, E., Grant. S., and Krystal, G. (1995) Cell Growth Differ. 6, 1073-1070; Rasmussen, G., and Rasmussen, C. (1995) Biochem. Cell Biol. 71, 201-207]. The stimulation of Ca(2+)-independent (autonomous) CaMK-II enzymatic activity, a barometer of in situ activated CaMK-II, was prevented by the same KN-93 concentrations that cause G1 phase arrest. KN-93 caused the retinoblastoma protein pRB to become dephosphorylated and the activity of both cdk2 and cdk4, two potential pRb kinases, to decrease. Neither the activity of p42MAP kinase, an early response G1 signaling molecule, nor the phosphorylation status or DNA-binding capability of the transcription factors serum response factor and cAMP responsive element-binding protein was altered during this G1 arrest. The protein levels of cyclin-dependent kinase 2 (cdk2) and cdk4 were unaffected during this G1 arrest and the total cellular levels of the cdk inhibitors p21cip1 and p27kip1 were not increased. Instead, the cdk4 activity decreases resulting from KN-93 were the result of a 75% decrease in cyclin D1 levels. In contrast, cyclin A and E levels were relatively constant. Cdk2 activity decreases were primarily the result of enhanced p27kip1 association with cdk2/cyclin E. All of these phenomena were unaffected by KN-93's inactive analog, KN-92, and were reversible upon KN-93 washout. The kinetics of recovery from cell cycle arrest were similar to those reported for other G1 phase blockers. These results suggest a mechanism by which G1 Ca2+ signals could be linked via calmodulin-dependent phosphorylations to the cell cycle-controlling machinery through cyclins and cdk inhibitors.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.