• Bmc Neurosci · Mar 2019

    Effect of lesion proximity on the regenerative response of long descending propriospinal neurons after spinal transection injury.

    • Kristen Swieck, Amanda Conta-Steencken, Frank A Middleton, Justin R Siebert, Donna J Osterhout, and Dennis J Stelzner.
    • Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA.
    • Bmc Neurosci. 2019 Mar 18; 20 (1): 10.

    BackgroundThe spinal cord is limited in its capacity to repair after damage caused by injury or disease. However, propriospinal (PS) neurons in the spinal cord have demonstrated a propensity for axonal regeneration after spinal cord injury. They can regrow and extend axonal projections to re-establish connections across a spinal lesion. We have previously reported differential reactions of two distinct PS neuronal populations-short thoracic propriospinal (TPS) and long descending propriospinal tract (LDPT) neurons-following a low thoracic (T10) spinal cord injury in a rat model. Immediately after injury, TPS neurons undergo a strong initial regenerative response, defined by the upregulation of transcripts to several growth factor receptors, and growth associated proteins. Many also initiate a strong apoptotic response, leading to cell death. LDPT neurons, on the other hand, show neither a regenerative nor an apoptotic response. They show either a lowered expression or no change in genes for a variety of growth associated proteins, and these neurons survive for at least 2 months post-axotomy. There are several potential explanations for this lack of cellular response for LDPT neurons, one of which is the distance of the LDPT cell body from the T10 lesion. In this study, we examined the molecular response of LDPT neurons to axotomy caused by a proximal spinal cord lesion.ResultsUtilizing laser capture microdissection and RNA quantification with branched DNA technology, we analyzed the change in gene expression in LDPT neurons following axotomy near their cell body. Expression patterns of 34 genes selected for their robust responses in TPS neurons were analyzed 3 days following a T2 spinal lesion. Our results show that after axonal injury nearer their cell bodies, there was a differential response of the same set of genes evaluated previously in TPS neurons after proximal axotomy, and LDPT neurons after distal axotomy (T10 spinal transection). The genetic response was much less robust than for TPS neurons after proximal axotomy, included both increased and decreased expression of certain genes, and did not suggest either a major regenerative or apoptotic response within the population of genes examined.ConclusionsThe data collectively demonstrate that the location of axotomy in relation to the soma of a neuron has a major effect on its ability to mount a regenerative response. However, the data also suggest that there are endogenous differences in the LDPT and TPS neuronal populations that affect their response to axotomy. These phenotypic differences may indicate that different or multiple therapies may be needed following spinal cord injury to stimulate maximal regeneration of all PS axons.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…