• IEEE Trans Biomed Eng · Mar 2007

    A model-based deconvolution approach to solve fiber crossing in diffusion-weighted MR imaging.

    • Flavio Dell'Acqua, Giovanna Rizzo, Paola Scifo, Rafael Alonso Clarke, Giuseppe Scotti, and Ferruccio Fazio.
    • University of Milano-Bicocca, Milan, Italy.
    • IEEE Trans Biomed Eng. 2007 Mar 1; 54 (3): 462-72.

    AbstractA deconvolution approach is presented to solve fiber crossing in diffusion magnetic resonance imaging. In order to provide a direct physical interpretation of the signal generation process, we started from the classical multicompartment model and rewrote this in terms of a convolution process, identifying a significant scalar parameter alpha to characterize the physical system response. Deconvolution is performed by a modified version of the Richardson-Lucy algorithm. Simulations show the ability of this method to correctly separate fiber crossing, even in the presence of noisy data, with lower signal-to-noise ratio, and imprecision in the impulse response function imposed during deconvolution. The in vivo data confirms the efficacy of this method to resolve fiber crossing in real complex brain structures. These results suggest the usefulness of our approach in fiber tracking or connectivity studies.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.