• Environmental pollution · Sep 2021

    Increased ozone pollution alongside reduced nitrogen dioxide concentrations during Vienna's first COVID-19 lockdown: Significance for air quality management.

    • Marlon Brancher.
    • WG Environmental Health, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210, Vienna, Austria. Electronic address: Marlon.Brancher@vetmeduni.ac.at.
    • Environ. Pollut. 2021 Sep 1; 284: 117153.

    BackgroundLockdowns amid the COVID-19 pandemic have offered a real-world opportunity to better understand air quality responses to previously unseen anthropogenic emission reductions.Methods And Main ObjectiveThis work examines the impact of Vienna's first lockdown on ground-level concentrations of nitrogen dioxide (NO2), ozone (O3) and total oxidant (Ox). The analysis runs over January to September 2020 and considers business as usual scenarios created with machine learning models to provide a baseline for robustly diagnosing lockdown-related air quality changes. Models were also developed to normalise the air pollutant time series, enabling facilitated intervention assessment.Core FindingsNO2 concentrations were on average -20.1% [13.7-30.4%] lower during the lockdown. However, this benefit was offset by amplified O3 pollution of +8.5% [3.7-11.0%] in the same period. The consistency in the direction of change indicates that the NO2 reductions and O3 increases were ubiquitous over Vienna. Ox concentrations increased slightly by +4.3% [1.8-6.4%], suggesting that a significant part of the drops in NO2 was compensated by gains in O3. Accordingly, 82% of lockdown days with lowered NO2 were accompanied by 81% of days with amplified O3. The recovery shapes of the pollutant concentrations were depicted and discussed. The business as usual-related outcomes were broadly consistent with the patterns outlined by the normalised time series. These findings allowed to argue further that the detected changes in air quality were of anthropogenic and not of meteorological reason. Pollutant changes on the machine learning baseline revealed that the impact of the lockdown on urban air quality were lower than the raw measurements show. Besides, measured traffic drops in major Austrian roads were more significant for light-duty than for heavy-duty vehicles. It was also noted that the use of mobility reports based on cell phone movement as activity data can overestimate the reduction of emissions for the road transport sector, particularly for heavy-duty vehicles. As heavy-duty vehicles can make up a large fraction of the fleet emissions of nitrogen oxides, the change in the volume of these vehicles on the roads may be the main driver to explain the change in NO2 concentrations.Interpretation And ImplicationsA probable future with emissions of volatile organic compounds (VOCs) dropping slower than emissions of nitrogen oxides could risk worsened urban O3 pollution under a VOC-limited photochemical regime. More holistic policies will be needed to achieve improved air quality levels across different regions and criteria pollutants.Copyright © 2021 The Author. Published by Elsevier Ltd.. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…