-
- Cathrine Aga, Matthew T Rasmussen, Sean D Smith, Kyle S Jansson, Robert F LaPrade, Lars Engebretsen, and Coen A Wijdicks.
- Department of BioMedical Engineering, Steadman Philippon Research Institute, Vail, CO 81657, USA.
- Am J Sports Med. 2013 Apr 1; 41 (4): 841-8.
BackgroundThe tibial fixation site has been reported to be the weakest point in anterior cruciate ligament (ACL) reconstructions. Numerous interference screws and combination screw and sheath devices are available for soft tissue fixation, and a biomechanical comparison of these devices is necessary.HypothesisCombination screw and sheath devices would provide superior soft tissue fixation properties compared with interference screws in a porcine model.Study DesignControlled laboratory study.MethodsEight different intratunnel tibial soft tissue fixation devices were biomechanically tested in a porcine model with bovine tendons, with 10 specimens per group. The soft tissue fixation devices included 3 interference screws-the Bio-Interference Screw, BIOSURE PK, and RCI Screw-and 5 combination screw and sheath devices (combination devices)-the AperFix II, BIOSURE SYNC, ExoShape, GraftBolt, and INTRAFIX. The specimens were subjected to cyclic (1000 cycles, 50-250 N, 0.5 Hz) and pull-to-failure loading (50 mm/min) with a dynamic tensile testing machine. Ultimate failure load (N), cyclic displacement (mm), pull-out stiffness (N/mm), displacement at failure (mm), load at 3 mm displacement (N), and mechanism of failure were recorded.ResultsThe ultimate failure loads were highest for the GraftBolt (1136 ± 115.6 N), followed by the INTRAFIX (1127 ± 155.0 N), AperFix II (1122 ± 182.9 N), BIOSURE PK (990.8 ± 182.1 N), Bio-Interference Screw (973.3 ± 95.82 N), BIOSURE SYNC (829.5 ± 172.4 N), RCI Screw (817.7 ± 113.9 N), and ExoShape (814.7 ± 178.8 N). The AperFix II, GraftBolt, and INTRAFIX devices were significantly stronger than the BIOSURE SYNC, RCI Screw, and ExoShape. Although the 3 strongest devices were combination screw and sheath devices, no significant differences were observed between the ultimate failure strengths of the screw and combination devices when compared as groups. The least amount of cyclic displacement after 1000 cycles was observed for the GraftBolt (1.38 ± 0.27 mm), followed by the AperFix II (1.58 ± 0.21 mm), Bio-Interference Screw (1.61 ± 0.22 mm), INTRAFIX (1.63 ± 0.15 mm), ExoShape (1.68 ± 0.30 mm), BIOSURE PK (1.72 ± 0.29 mm), BIOSURE SYNC (1.92 ± 0.59 mm), and RCI Screw (1.97 ± 0.39 mm). The GraftBolt allowed significantly less displacement than did the BIOSURE SYNC and RCI Screw. Similarly, no significant differences were observed between the cyclic displacements of the screws and combination devices when compared as groups.ConclusionThe combination screw and sheath devices did not provide superior soft tissue fixation properties compared with the interference screws alone in a porcine model. Although the highest ultimate failure loads and least amounts of cyclic displacement were observed for combination devices, group comparisons of screw and combination devices did not result in any significant differences for ultimate failure load and cyclic displacement.Clinical RelevanceIt is important to consider that these results represent device performance in an in vitro animal model and are not directly transferrable to an in vivo clinical situation. The combination of a sheath and screw did not consistently result in improved fixation characteristics compared with interference screw fixation.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.