• Journal of anesthesia · Mar 1996

    Effects of phenol on vascular smooth muscle in rabbit mesenteric resistance arteries.

    • T Akata, K Kodama, and S Takahashi.
    • Department of Anaesthesiology and Critical Care Medicine, Faculty of Medicine, Kyushu University, 812, Fukuoka, Japan.
    • J Anesth. 1996 Mar 1;10(1):26-32.

    AbstractAlthough phenol has long been used clinically as a neurolytic agent or as a preservative for injections, little information is available regarding its direct vascular action. We therefore studied the effects of phenol (0.1 μM-2mM) on isolated rabbit small mesenteric arteries, using isometric tension recording methods. All experiments were performed on endothelium-denuded strips. Phenol (≥10 μM) generated transsient contractions in a concentration-dependent manner in both normal Krebs and Ca(2+)-free solutions with EC50 values (concentrations that produced 50% of the maximal response) of 39.8 μM and 99.7 μM, respectively. Depletion of intracellular Ca(2+) stores by A23187 or ryanodine completely elimited the phenol-induced contractions. When caffeine (10 mM) and noradrenaline (NA, 10μM) were consecutively applied in Ca(2+)-free solution with an interval of 7 min (sufficient to prevent caffeine-induced inhibition of Ca(2+) sensitivity), caffeine eliminated the contractions induced by subsequent application of NA. In similar experiments where phenol (1 mM) and NA (10 μM) were consecutively applied in Ca(2+)-free solution, phenol significantly inhibited contractions induced by subsequent application of NA. Phenol (0.1 mM, ∼EC65), applied in the presence of either 128 mM K(+) or NA (10 μM), produced transient vasoconstrictions superimposed on both high K(+)-and NA-induced contractions, but had a lesser effect on maintenance of these contractions. The vascular responses to high K(+), NA, and caffeine after washout of phenol were not significantly different from those before application of phenol (up to 2 mM). The results suggest that phenol stimulates Ca(2+) release from intracellular Ca(2+) stores, which are sensitive to both caffine and NA in this resistance artery. The effect does not appear to reflect a toxic effect on vascular smooth muscle. It seems unlikely that phenol causes adverse hemodynamic changes because of the observed direct vascular action.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.