• Am J Sports Med · Nov 2008

    Patellar tendon strain is increased at the site of the jumper's knee lesion during knee flexion and tendon loading: results and cadaveric testing of a computational model.

    • Michael Lavagnino, Steven P Arnoczky, Niell Elvin, and Julie Dodds.
    • Laboratory for Comparative Orthopaedic Research, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA.
    • Am J Sports Med. 2008 Nov 1; 36 (11): 2110-8.

    BackgroundPatellar tendinopathy (jumper's knee) is characterized by localized tenderness of the patellar tendon at its origin on the inferior pole of the patella and a characteristic increase in signal intensity on magnetic resonance imaging at this location. However, it is unclear why the lesion typically occurs in this area of the patellar tendon as surface strain gauge studies of the patellar tendon through the range of motion have produced conflicting results.HypothesisThe predicted patellar tendon strains that occur as a result of the tendon loads and patella-patellar tendon angles (PPTAs) experienced during a jump landing will be significantly increased in the area of the patellar tendon associated with patellar tendinopathy.Study DesignDescriptive laboratory study.MethodsA 2-dimensional, computational, finite element model of the patella-patellar tendon complex was developed using anatomic measurements taken from lateral radiographs of a normal knee. The patella was modeled with plane strain rigid elements, and the patellar tendon was modeled with 8-node plane strain elements with neo-Hookean material properties. A tie constraint was used to join the patellar tendon and patella. Patella-patellar tendon angles corresponding to knee flexion angles between 0 degrees and 60 degrees and patellar tendon strains ranging from 5% to 15% were used as input variables into the computational model. To determine if the location of increased strain predicted by the computational model could produce isolated tendon fascicle damage in that same area, 5 human cadaveric patella-patellar tendon-tibia specimens were loaded under conditions predicted by the model to significantly increase localized tendon strain. Pre- and posttesting ultrasound images of the patella-patellar tendon specimens were obtained to document the location of any injured fascicles.ResultsLocalized tendon strain at the classic location of the jumper's knee lesion was found to increase in association with an increase in the magnitude of applied patellar tendon strain and a decrease in the PPTA. The principal stresses and strains predicted by the model for this localized area were tensile and not compressive in nature. Applying the tendon strain conditions and PPTA predicted by the model to significantly increase localized strain resulted in disruption of tendon fascicles in 3 of the 5 cadaveric specimens at the classic location of the patellar tendinopathy lesion.ConclusionThe localized increase in patellar tendon strain that occurs in response to the application of tendon loads and decreased PPTA could induce microdamage at the classic location of the jumper's knee lesion.Clinical RelevanceThe association of decreasing PPTA with increasing localized tendon strain would implicate the role of knee-joint angle as well as tendon force in the etiopathogenesis of jumper's knee.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.