-
- Elise Magnin, Ruggiero Francavilla, Sona Amalyan, Etienne Gervais, Linda Suzanne David, Xiao Luo, and Lisa Topolnik.
- Department of Biochemistry, Microbiology and Bio-informatics, Neuroscience Axis, CHU de Québec Research Center, Laval University, Québec G1V 4G2, Canada.
- J. Neurosci. 2019 Jan 30; 39 (5): 788-801.
AbstractHippocampus-dependent learning processes are coordinated via a large diversity of GABAergic inhibitory mechanisms. The α5 subunit-containing GABAA receptor (α5-GABAAR) is abundantly expressed in the hippocampus populating primarily the extrasynaptic domain of CA1 pyramidal cells, where it mediates tonic inhibitory conductance and may cause functional deficits in synaptic plasticity and hippocampus-dependent memory. However, little is known about synaptic expression of the α5-GABAAR and, accordingly, its location site-specific function. We examined the cell- and synapse-specific distribution of the α5-GABAAR in the CA1 stratum oriens/alveus (O/A) using a combination of immunohistochemistry, whole-cell patch-clamp recordings and optogenetic stimulation in hippocampal slices obtained from mice of either sex. In addition, the input-specific role of the α5-GABAAR in spatial learning and anxiety-related behavior was studied using behavioral testing and chemogenetic manipulations. We demonstrate that α5-GABAAR is preferentially targeted to the inhibitory synapses made by the vasoactive intestinal peptide (VIP)- and calretinin-positive terminals onto dendrites of somatostatin-expressing interneurons. In contrast, synapses made by the parvalbumin-positive inhibitory inputs to O/A interneurons showed no or little α5-GABAAR. Inhibiting the α5-GABAAR in control mice in vivo improved spatial learning but also induced anxiety-like behavior. Inhibiting the α5-GABAAR in mice with inactivated CA1 VIP input could still improve spatial learning and was not associated with anxiety. Together, these data indicate that the α5-GABAAR-mediated phasic inhibition via VIP input to interneurons plays a predominant role in the regulation of anxiety while the α5-GABAAR tonic inhibition via this subunit may control spatial learning.SIGNIFICANCE STATEMENT The α5-GABAAR subunit exhibits high expression in the hippocampus, and regulates the induction of synaptic plasticity and the hippocampus-dependent mnemonic processes. In CA1 principal cells, this subunit occupies mostly extrasynaptic sites and mediates tonic inhibition. Here, we provide evidence that, in CA1 somatostatin-expressing interneurons, the α5-GABAAR subunit is targeted to synapses formed by the VIP- and calretinin-expressing inputs, and plays a specific role in the regulation of anxiety-like behavior.Copyright © 2019 the authors 0270-6474/19/390788-14$15.00/0.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.