• World Neurosurg · Oct 2021

    Biomechanical evaluation of a novel S-type, dynamic zero-profile cage design for anterior cervical discectomy and fusion with variations in bone graft shape: A finite element analysis.

    • Pechimuthu Susai Manickam, Sandipan Roy, and Gautam M Shetty.
    • Department of Mechanical Engineering, SRM Institute of Science and Technology, Potheri, Kattankulathur, Chengalpattu District, Tamilnadu, India.
    • World Neurosurg. 2021 Oct 1; 154: e199-e214.

    BackgroundVariations in cage design, material, and graft shape can affect osteointegration and adjacent segment range of motion (ROM) and stress after anterior cervical discectomy and fusion (ACDF) surgery. This study aimed to evaluate the biomechanical properties of a novel dynamic cervical cage design in both titanium (Ti) and polyether ether ketone (PEEK) with variations in bone graft shape using a single level ACDF (FE) model.MethodsA 3-dimensional C3-C6 FE model was developed using computed tomography scan data from a healthy male subject. The novel S-shaped dynamic interbody fusion cage with a zero-profile fixation was inserted at the C4-C5 level with 4 different bone graft shapes (square, circular, rectangular, and elliptical). Changes in segmental ROM and maximum von Mises stresses at the fusion and adjacent segments were analyzed.ResultsBoth Ti and PEEK cages showed decreased ROM at the fusion and adjacent levels for all shapes of bone graft when compared with the intact spine model. The elliptical graft, for both Ti and PEEK cages, showed a lower percentage of reduction in segmental ROM at the fusion and adjacent levels (0%-5.6%) when compared with other graft shapes (0%-12%). Maximum stresses at the fusion level were lowest in Ti cage with elliptical graft (229.8-347.6 MPa) when compared with other shapes (241.2-476.2 MPa) in flexion, extension, and lateral bending. For the bone graft, maximum stresses were highest on the elliptical-shaped bone graft in flexion and extension in the Ti cage, and in flexion and lateral bending in the PEEK cage.ConclusionsBoth Ti and PEEK cages showed decreased ROM at the fusion and adjacent levels for all shapes of bone graft when compared with the intact spine model. In the Ti and PEEK dynamic cages, the elliptical shape bone graft showed decreased stress on the cage and increased stress on the bone graft. Further experimental and clinical studies are needed to confirm these encouraging biomechanical results of this novel dynamic, zero-profile fusion device with elliptical bone graft in ACDF surgery.Copyright © 2021 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.