• IEEE Trans Biomed Eng · Sep 2008

    Speckle noise reduction of medical ultrasound images in complex wavelet domain using mixture priors.

    • Hossein Rabbani, Mansur Vafadust, Purang Abolmaesumi, and Saeed Gazor.
    • Department of Physics and Biomedical Engineering, Isfahan University of Medical Sciences, 81465-1148 Isfahan, Iran.
    • IEEE Trans Biomed Eng. 2008 Sep 1; 55 (9): 2152-60.

    AbstractSpeckle noise is an inherent nature of ultrasound images, which may have negative effect on image interpretation and diagnostic tasks. In this paper, we propose several multiscale nonlinear thresholding methods for ultrasound speckle suppression. The wavelet coefficients of the logarithm of image are modeled as the sum of a noise-free component plus an independent noise. Assuming that the noise-free component has some local mixture distribution (MD), and the noise is either Gaussian or Rayleigh, we derive the minimum mean squared error (MMSE) and the averaged maximum a posteriori (AMAP) estimators for noise reduction. We use Gaussian and Laplacian MD for each noise-free wavelet coefficient to characterize their heavy-tailed property. Since we estimate the parameters of the MD using the expectation maximization (EM) algorithm and local neighbors, the proposed MD incorporates some information about the intrascale dependency of the wavelet coefficients. To evaluate our spatially adaptive despeckling methods, we use both real medical ultrasound and synthetically introduced speckle images for speckle suppression. The simulation results show that our method outperforms several recently and the state-of-the-art techniques qualitatively and quantitatively.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…