• Med Phys · Oct 2007

    A simple geometric algorithm to predict optimal starting gantry angles using equiangular-spaced beams for intensity modulated radiation therapy of prostate cancer.

    • Peter S Potrebko, Boyd M C McCurdy, James B Butler, Adel S El-Gubtan, and Zoann Nugent.
    • Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada. peter.potrebko@cancercare.mb.ca
    • Med Phys. 2007 Oct 1; 34 (10): 3951-61.

    AbstractA fast, geometric beam angle optimization (BAO) algorithm for clinical intensity-modulated radiation therapy (IMRT) was implemented on ten localized prostate cancer patients on the Radiation Therapy Oncology Group (RTOG) 0126 protocol. The BAO algorithm computed the beam intersection volume (BIV) within the rectum and bladder using five and seven equiangular-spaced beams as a function of starting gantry angle for comparison to the V 75 Gy and V 70 Gy. A mathematical theory was presented to explain the correlation of BIV with dose and dose-volume metrics. The class solution 'W' pattern in the rectal V 75 Gy and V 70 Gy as a function of starting gantry angle using five equiangular-spaced beams (with two separate minima centered near 20 degrees and 50 degrees) was reproduced by the 5 BIV within the rectum. A strong correlation was found between the rectal 5 BIV and the rectal V 75 Gy and V 70 Gy as a function of starting gantry angle. The BAO algorithm predicted the location of the two dosimetric minima in rectal V 75 Gy and V 70 Gy (optimal starting gantry angles) to within 5 degrees. It was demonstrated that the BIV geometric variations for seven equiangular-spaced beams were too small to translate into a strong dosimetric effect in the rectal V 75 Gy and V 70 Gy. The relatively flat distribution with starting gantry angle of the bladder V 75 Gy and V 70 Gy was reproduced by the bladder five and seven BIV for each patient. A geometric BAO method based on BIV has the advantage over dosimetric BAO methods of simplicity and rapid computation time. This algorithm can be used as a standalone optimization method or act as a rapid calculation filter to reduce the search space for a dosimetric BAO method. Given the clinically infeasible computation times of many dosimetric beam orientation optimization algorithms, this robust geometric BIV algorithm has the potential to facilitate beam angle selection for prostate IMRT in clinical practice.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…