• Adv Exp Med Biol · Jan 2012

    Progenitor cells: role and usage in bone tissue engineering approaches for spinal fusion.

    • Lonnissa H Nguyen, Vincent Duenas, Mike Y Chen, and Rahul Jandial.
    • Division of Neurosurgery, City of Hope Cancer Center, Los Angeles, California, USA. lonnguyen@coh.org
    • Adv Exp Med Biol. 2012 Jan 1;760:188-210.

    AbstractAdvancement of in vitro osteogenesis, or the production of bone, is a complex process that has significant clinical implications. Surgical intervention of several spinal disorders entails decompression of the spinal cord and nerves which can lead to subsequent biomechanical instability of the spine. Spinal arthrodesis (fusion) is often required to correct this instability and necessary to eliminate the resulting pathological motion of vertebral segments. Therefore, the achievement of proper spinal fusion, is a critical determinant of treatment efficacy. This chapter focuses on the molecular and cellular components that are involved in bone growth and healing. Mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) are the precursor cells essential for the formation of the five different types of bone cells: osteoprogenitor cells, osteoblasts, osteoclasts, osteocytes and lining cells. Similarly, endothelial progenitor cells (EPCs) differentiate into endothelial cells, which are essential in angiogenesis and neovascularization. MSCs tri-lineage potential (osteogenic, chondrogenic and adipogenic lineages) have made them the focus of most experimental approaches. Here, we describe their individual roles, as well as pose novel concepts on how their collective role may be the optimal strategy to improve upon in vitro osteogenesis and whether this could also be translated to improved bone formation in vivo. Further, we discuss the various molecular markers that are available for cell identification and the tissue engineering strategies that could replicate the osteoinductive, osteoconductive and osteoproductive milieuthat is available in autograft. Finally, we present a broad primer on the possible integration of cellular, molecular and tissue engineering strategies to improve osteogenesis and the future trends that may bring the promise seen in the laboratory to fruition in preclinical animal models.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.