• Autophagy · Oct 2008

    Autophagic proteins regulate cigarette smoke-induced apoptosis: protective role of heme oxygenase-1.

    • Hong Pyo Kim, Xue Wang, Zhi-Hua Chen, Seon-Jin Lee, Min-Hsin Huang, Yong Wang, Stefan W Ryter, and Augustine M K Choi.
    • Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, MUH 628NW, Pittsburgh, Pennsylvania, USA.
    • Autophagy. 2008 Oct 1; 4 (7): 887-95.

    AbstractCigarette smoke-induced cell death contributes to the pathogenesis of chronic obstructive pulmonary disease, though the relative roles of apoptosis and autophagy remain unclear. The inducible stress protein heme oxygenase-1 (HO-1) confers cytoprotection against oxidative stress. We examined the relationships between these processes in human bronchial epithelial cells (Beas-2b) exposed to cigarette smoke extract (CSE). CSE induced morphological and biochemical markers of autophagy in Beas-2b cells and induced autophagosome formation as evidenced by formation of GFP-LC3 puncta and electron microscopic analysis. Furthermore, CSE increased the processing of microtubule-associated protein-1 light chain-3 (LC3B-I) to LC3B-II, within 1 hr of exposure. Increased LC3B-II was associated with increased autophagy, since inhibitors of lysosomal proteases and of autophagosome-lysosome fusion further increased LC3B-II levels during CSE exposure. CSE concurrently induced extrinsic apoptosis in Beas-2b cells involving early activation of death-inducing-signaling-complex (DISC) formation and downstream activation of caspases (-8,-9,-3). The induction of extrinsic apoptosis by CSE was dependent in part on autophagic proteins. Reduction of Beclin 1 levels with beclin 1 siRNA inhibited DISC formation and caspase-3/8 activation in response to CSE. LC3B siRNA also inhibited caspase-3/8 activation. The stress protein HO-1 protected against CSE-induced cell death by concurrently downregulating apoptosis and autophagy-related signaling. Adenoviral mediated expression of HO-1 inhibited DISC formation and caspase-3/9 activation in CSE-treated epithelial cells, diminished the expression of Beclin 1, and partially inhibited the processing of LC3B-I to LC3B-II. Conversely, transfection of Beas-2b with ho-1 siRNA augmented CSE-induced DISC formation and increased intracellular reactive oxygen species formation. HO-1 expression augmented CSE-induced phosphorylation of NFkappaB p65 in Beas-2b cells. Consistently, expression of IkappaB, the inhibitor of NFkappaB, increased CSE-induced DISC formation. LC3B siRNA also enhanced p65 phosphorylation. In fibroblasts from beclin 1 heterozygous knockout mice, p65 phosphorylation was dramatically upregulated, while CSE-induced DISC formation was inhibited, consistent with an anti-apoptotic role for NFkappaB and a pro-apoptotic role for Beclin 1. These studies demonstrated an interdependence of autophagic and apoptogenic signaling in CSE-induced cell death, and their coordinated downregulation by HO-1. An understanding of the regulation of cell death pathways during smoke exposure may provide therapeutic strategies in smoke-related illness.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.