-
- Moti Freiman, Stephan D Voss, Robert V Mulkern, Jeannette M Perez-Rossello, Michael J Callahan, and Simon K Warfield.
- Moti Freiman, Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston Massachusetts 02115, USA. moti.freiman@childrens.harvard.edu
- Med Phys. 2012 Aug 1; 39 (8): 4832-9.
PurposeTo assess the optimal b-values range for perfusion-insensitive apparent diffusion coefficient (ADC) imaging of abdominal organs using short-duration DW-MRI acquisitions with currently available ADC estimation methods.MethodsDW-MRI data of 15 subjects were acquired with eight b-values in the range of 5-800 s∕mm(2). The reference-standard, a perfusion insensitive, ADC value (ADC(IVIM)), was computed using an intravoxel incoherent motion (IVIM) model with all acquired diffusion-weighted images. Simulated DW-MRI data was generated using an IVIM model with b-values in the range of 0-1200 s∕mm(2). Monoexponential ADC estimates were calculated using: (1) Two-point estimator (ADC(2)); (2) least squares three-point (ADC(3)) estimator and; (3) Rician noise model estimator (ADC(R)). The authors found the optimal b-values for perfusion-insensitive ADC calculations by minimizing the relative root mean square error (RRMS) between the ADC(IVIM) and the monoexponential ADC values for each estimation method and organ.ResultsLow b-value = 300 s∕mm(2) and high b-value = 1200 s∕mm(2) minimized the RRMS between the estimated ADC and the reference-standard ADC(IVIM) to less than 5% using the ADC(3) estimator. By considering only the in vivo DW-MRI data, the combination of low b-value = 270 s∕mm(2) and high b-value of 800 s∕mm(2) minimized the RRMS between the estimated ADC and the reference-standard ADC(IVIM) to <7% using the ADC(3) estimator. For all estimators, the RRMS between the estimated ADC and the reference standard ADC correlated strongly with the perfusion-fraction parameter of the IVIM model (r = [0.78-0.83], p ≤ 0.003).ConclusionsThe perfusion compartment in DW-MRI signal decay correlates strongly with the RRMS in ADC estimates from short-duration DW-MRI. The impact of the perfusion compartment on ADC estimations depends, however, on the choice of b-values and estimation method utilized. Likewise, perfusion-related errors can be reduced to <7% by carefully selecting the b-values used for ADC calculations and method of estimation.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.