-
Investigative radiology · Mar 2016
A Standardized Parameter-Free Algorithm for Combined Intravoxel Incoherent Motion and Diffusion Kurtosis Analysis of Diffusion Imaging Data.
- Moritz C Wurnig, David Kenkel, Lukas Filli, and Andreas Boss.
- From the Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland.
- Invest Radiol. 2016 Mar 1; 51 (3): 203-10.
ObjectivesThe aims of this study were to implement and systematically evaluate the performance of a new parameter-free segmented algorithm for analysis of diffusion imaging data using a combined intravoxel incoherent motion and diffusion kurtosis imaging (IVIM-DKI) model of spin diffusion in comparison with the simpler intravoxel incoherent motion (IVIM) model.Materials And MethodsA multistep algorithm was implemented intended to separate diffusion kurtosis from IVIM effects in multi-b-value diffusion measurements using an adaptive b-value threshold technique. For each possible b-value threshold (separating diffusion and perfusion effects), diffusion kurtosis analysis of high b-values is followed by IVIM analysis keeping kurtosis parameters fixed. The b-value threshold with smallest Akaike information criterion is chosen as best model solution. The algorithm was tested in diffusion data sets of the upper abdomen from 8 healthy volunteers with 16 different b-values and compared with a standard multistep IVIM analysis.ResultsThe proposed algorithm could successfully be applied to all data sets and provided a significantly better fit of the observed signal decay in all assessed organs (all P < 0.03). Using the proposed IVIM-DKI model of diffusion instead of an IVIM model had a systematic impact on the resulting IVIM parameters: The pure diffusion coefficient and the pseudodiffusion coefficient were significantly increased (P < 0.03 in all assessed organs), accompanied by a decrease in the perfusion fraction in liver, pancreas, renal cortex, and skeletal muscle (all P < 0.02). Optimal b-value thresholds separating diffusion from perfusion effects had a tendency to lower values when the IVIM-DKI model was used.ConclusionsThe proposed algorithm provides a new approach for separation of IVIM and kurtosis effects of diffusion data without organ-specific adaptation.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.