• J. Am. Soc. Nephrol. · Aug 2005

    Dominant role of prostaglandin E2 EP4 receptor in furosemide-induced salt-losing tubulopathy: a model for hyperprostaglandin E syndrome/antenatal Bartter syndrome.

    • Rolf M Nüsing, Antje Treude, Christian Weissenberger, Boye Jensen, Martin Bek, Charlotte Wagner, Shuh Narumiya, and Hannsjörg W Seyberth.
    • Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, Frankfurt 60590, Germany. r.m.nuesing@med.uni-frankfurt.de
    • J. Am. Soc. Nephrol. 2005 Aug 1; 16 (8): 2354-62.

    AbstractIncreased formation of prostaglandin E2 (PGE2) is a key part of hyperprostaglandin E syndrome/antenatal Bartter syndrome (HPS/aBS), a renal disease characterized by NaCl wasting, water loss, and hyperreninism. Inhibition of PGE2 formation by cyclo-oxygenase inhibitors significantly lowers patient mortality and morbidity. However, the pathogenic role of PGE2 in HPS/aBS awaits clarification. Chronic blockade of the Na-K-2Cl co-transporter NKCC2 by diuretics causes symptoms similar to HPS/aBS and provides a useful animal model. In wild-type (WT) mice and in mice lacking distinct PGE2 receptors (EP1-/-, EP2-/-, EP3-/-, and EP4-/-), the effect of chronic furosemide administration (7 d) on urine output, sodium and potassium excretion, and renin secretion was determined. Furthermore, furosemide-induced diuresis and renin activity were analyzed in mice with defective PGI2 receptors (IP-/-). In all animals studied, furosemide stimulated a rise in diuresis and electrolyte excretion. However, this effect was blunted in EP1-/-, EP3-/-, and EP4-/- mice. Compared with WT mice, no difference was observed in EP2-/- and IP-/- mice. The furosemide-induced increase in plasma renin concentration was significantly decreased in EP4-/- mice and to a lesser degree also in IP-/- mice. Pharmacologic inhibition of EP4 receptors in furosemide-treated WT mice with the specific antagonist ONO-AE3-208 mimicked the changes in renin mRNA expression, plasma renin concentration, diuresis, and sodium excretion seen in EP4-/- mice. The GFR in EP4-/- mice was not changed compared with that in WT mice, which indicated that blunted diuresis and salt loss seen in EP4-/- mice were not a consequence of lower GFR. In summary, these findings demonstrate that the EP4 receptor mediates PGE2-induced renin secretion and that EP1, EP3, and EP4 receptors all contribute to enhanced PGE2-mediated salt and water excretion in the HPS/aBS model.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…