• Clin Neurophysiol · Feb 2009

    Choice of multivariate autoregressive model order affecting real network functional connectivity estimate.

    • Camillo Porcaro, Filippo Zappasodi, Paolo Maria Rossini, and Franca Tecchio.
    • AFaR-Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy. c.porcaro@bham.ac.uk
    • Clin Neurophysiol. 2009 Feb 1; 120 (2): 436-48.

    ObjectiveA realistic simulation exploiting real cortical sources identified from non-invasive extra-cranial recordings in healthy subjects has been considered in order to select the most robust procedure for choosing the correct order of multivariate autoregressive (MVAR) models. Different signal-to-noise ratios filter settings and sampling rates were also tested on the estimate of functional connectivity among the network nodes, in simulated and real cases.MethodsStarting from magnetoencephalographic recordings, cortical sources in primary sensorimotor areas of the hand were obtained by functional source separation (FSS). Different criteria for the choice of the model order were compared in the simulated network constructed through one of the FSS-extracted sources and its noise-added delayed copies. In two real cases, a validation of the model order (not known a priori) choice was obtained by comparing the time-frequency properties as depicted by classical non-parametric and MVAR methods at rest, during isometric contraction (stationary states) and while dynamically responding to a sensory stimulation (transient state). For completeness, the whole set of MVAR functional connectivity measures was taken into account, to assess the most suitable for our network description.ResultsThat the use of an incorrect model order distorts network functional connectivity estimate was documented both in the realistic simulation and in the two real cases. The Minimal Description Length and Schwartz Bayesian Criterion were selected as the most robust for MVAR model order choice. Partial directed coherence (PDC) was the most suitable method for time-frequency connectivity estimate in the simulated as well as in the real cases, both in stationary and transient states. Moreover, the results of MVAR-based connectivity estimate depend on filter setting in the real case.ConclusionsThe most robust procedure for choosing the correct MVAR model order was provided. The adjunctive comparison of MVAR to classical methods is recommended to validate the choice in the real case.SignificanceCorrect MVAR model order choice and band filtering play an important role for the correct network connectivity estimate.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.