• IEEE Trans Neural Syst Rehabil Eng · Oct 2008

    Brain network analysis from high-resolution EEG recordings by the application of theoretical graph indexes.

    • F De Vico Fallani, L Astolfi, F Cincotti, D Mattia, A Tocci, S Salinari, M G Marciani, H Witte, A Colosimo, and F Babiloni.
    • IRCCS Fondazione Santa Lucia, 00179 Rome, Italy. fabrizio.devicofallani@uniroma1.it
    • IEEE Trans Neural Syst Rehabil Eng. 2008 Oct 1; 16 (5): 442-52.

    AbstractThe extraction of the salient characteristics from brain connectivity patterns is an open challenging topic since often the estimated cerebral networks have a relative large size and complex structure. Since a graph is a mathematical representation of a network, which is essentially reduced to nodes and connections between them, the use of a theoretical graph approach would extract significant information from the functional brain networks estimated through different neuroimaging techniques. The present work intends to support the development of the "brain network analysis:" a mathematical tool consisting in a body of indexes based on the graph theory able to improve the comprehension of the complex interactions within the brain. In the present work, we applied for demonstrative purpose some graph indexes to the time-varying networks estimated from a set of high-resolution EEG data in a group of healthy subjects during the performance of a motor task. The comparison with a random benchmark allowed extracting the significant properties of the estimated networks in the representative Alpha (7-12 Hz) band. Altogether, our findings aim at proving how the brain network analysis could reveal important information about the time-frequency dynamics of the functional cortical networks.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…