-
- Sushravya Raghunath, John M Pfeifer, Alvaro E Ulloa-Cerna, Arun Nemani, Tanner Carbonati, Linyuan Jing, David P vanMaanen, Dustin N Hartzel, Jeffery A Ruhl, Braxton F Lagerman, Daniel B Rocha, Nathan J Stoudt, Gargi Schneider, Kipp W Johnson, Noah Zimmerman, Joseph B Leader, H Lester Kirchner, Christoph J Griessenauer, Ashraf Hafez, Christopher W Good, Brandon K Fornwalt, and Christopher M Haggerty.
- Department of Translational Data Science and Informatics (S.R., A.E.U.-C., L.J., D.P.v.M, J.A.R., N.J.S., G.S., B.K.F., C.M.H.), Geisinger, Danville, PA.
- Circulation. 2021 Mar 30; 143 (13): 1287-1298.
BackgroundAtrial fibrillation (AF) is associated with substantial morbidity, especially when it goes undetected. If new-onset AF could be predicted, targeted screening could be used to find it early. We hypothesized that a deep neural network could predict new-onset AF from the resting 12-lead ECG and that this prediction may help identify those at risk of AF-related stroke.MethodsWe used 1.6 M resting 12-lead digital ECG traces from 430 000 patients collected from 1984 to 2019. Deep neural networks were trained to predict new-onset AF (within 1 year) in patients without a history of AF. Performance was evaluated using areas under the receiver operating characteristic curve and precision-recall curve. We performed an incidence-free survival analysis for a period of 30 years following the ECG stratified by model predictions. To simulate real-world deployment, we trained a separate model using all ECGs before 2010 and evaluated model performance on a test set of ECGs from 2010 through 2014 that were linked to our stroke registry. We identified the patients at risk for AF-related stroke among those predicted to be high risk for AF by the model at different prediction thresholds.ResultsThe area under the receiver operating characteristic curve and area under the precision-recall curve were 0.85 and 0.22, respectively, for predicting new-onset AF within 1 year of an ECG. The hazard ratio for the predicted high- versus low-risk groups over a 30-year span was 7.2 (95% CI, 6.9-7.6). In a simulated deployment scenario, the model predicted new-onset AF at 1 year with a sensitivity of 69% and specificity of 81%. The number needed to screen to find 1 new case of AF was 9. This model predicted patients at high risk for new-onset AF in 62% of all patients who experienced an AF-related stroke within 3 years of the index ECG.ConclusionsDeep learning can predict new-onset AF from the 12-lead ECG in patients with no previous history of AF. This prediction may help identify patients at risk for AF-related strokes.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.