• Bull. World Health Organ. · Jan 1997

    Comparative Study

    Evaluation of an algorithm for the integrated management of childhood illness in an area with seasonal malaria in the Gambia.

    • M W Weber, E K Mulholland, S Jaffar, H Troedsson, S Gove, and B M Greenwood.
    • Medical Research Council Laboratories, Fajara, Banjul, Gambia.
    • Bull. World Health Organ. 1997 Jan 1; 75 Suppl 1: 25-32.

    AbstractMost of the 12.4 million deaths occurring every year among under-5-year-olds in developing countries could be prevented by the application of simple treatment strategies. So that health professionals who have had limited training can identify and classify the common childhood diseases, WHO developed a treatment algorithm (the Integrated Management of Childhood Illness (IMCI) or Sick Child algorithm), a prototype of which was tested in 440 Gambian children aged between 2 months and 5 years. The children were first assessed by a trained field worker using the algorithm, and then by a paediatrician whose clinical diagnosis was supported by laboratory investigations and, when indicated, a chest X-ray. Compared with the paediatrician's diagnosis, the sensitivity and specificity of the draft IMCI algorithm were, respectively, 81% and 89% for the detection of pneumonia, 67% and 96% for dehydration, 87% and 8% for malaria parasitaemia (any level), 100% and 9% for malaria parasitaemia (above 5000 parasites/microliter), 100% and 99% for measles, 31% and 97% for otitis media, and 89% and 90% for malnutrition. Among the children admitted by the physician, 45% had been recommended for admission by the algorithm. Intermittent fever, chills and sweats did not help in discriminating between malaria and non-malarious fevers; shivering or shaking of the body had a sensitivity of only 35%. While the algorithm dealt with the majority of presenting complaints, the most common problems not addressed by the chart were skin rashes (21%), mouth problems (8%), and eye problems (6%). The draft IMCI algorithm proved to be effective in the diagnosis of pneumonia, gastroenteritis, measles and malnutrition, but not malaria where its use without microscopy would result in considerable over-treatment, especially in a low transmission area or during a low transmission season in countries with seasonal malaria. The current algorithm would benefit from expansion to cover management of localized infections as well as skin, mouth and eye problems.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.