• Integr Cancer Ther · Sep 2007

    Beta-carotene inhibits tumor-specific angiogenesis by altering the cytokine profile and inhibits the nuclear translocation of transcription factors in B16F-10 melanoma cells.

    • C Guruvayoorappan and Girija Kuttan.
    • Department of Immunology, Amala Cancer Research Centre, Amala Nagar, Kerala State, India.
    • Integr Cancer Ther. 2007 Sep 1; 6 (3): 258-70.

    AbstractAngiogenesis is the formation of new blood vessels out of the preexisting vascular network and involves a sequence of events that are of key importance in a broad array of physiological and pathological processes. The growth of tumor and metastasis are dependent on the formation of new blood vessels. The present study therefore aims at evaluating the antiangiogenic effect of beta-carotene using in vivo and in vitro models. Male C57BL/6 mice as well as B16F-10 cells were used for the experimental study. The in vivo study includes the inhibitory effect of beta-carotene on the formation of tumor-directed capillaries. Rat aortic ring assay, human umbilical vein endothelial cell proliferation, migration, and tube formation are used for assessing the in vitro antiangiogenic effect of beta-carotene. The differential regulation of proinflammatory cytokines as well as the inhibitory effect of beta-carotene on the activation and nuclear translocation of transcription factors are also assessed. Beta-carotene treatment significantly reduces the number of tumor-directed capillaries accompanied by altered serum cytokine levels. Beta-carotene is able to inhibit proliferation, migration, and tube formation of endothelial cells. Beta-carotene treatment downregulates the expression of matrix metalloproteinase (MMP)-2, MMP-9, prolyl hydroxylase, and lysyl oxidase gene expression and upregulates the expression of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. The study reveals that beta-carotene treatment could alter proinflammatory cytokine production and could inhibit the activation and nuclear translocation of p65, p50, c-Rel subunits of nuclear factor-kappa B, and other transcription factors such as c-fos, activated transcription factor-2, and cyclic adenosine monophosphate response element-binding protein in B16F-10 melanoma cells. These observations show that beta -carotene exerts its antiangiogenic effect by altering the cytokine profile and could inhibit the activation and nuclear translocation of transcription factors.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.