• Neuroscience letters · Jul 2015

    Neuroanatomical deficits correlate with executive dysfunction in boys with attention deficit hyperactivity disorder.

    • Ning He, Fei Li, Yuanyuan Li, Lanting Guo, Lizhou Chen, Xiaoqi Huang, Su Lui, and Qiyong Gong.
    • Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China.
    • Neurosci. Lett. 2015 Jul 23; 600: 45-9.

    AbstractPrevious structural imaging studies have revealed gray matter volume abnormalities to reflect the etiology of attention deficit hyperactivity disorder (ADHD), however, which are confounded by age, medication and comorbidity and also ignore the core feature of brain structure in the executive impairments of ADHD. In the present study, we explored gray matter volume abnormalities in male children and adolescents with ADHD who were drug-naive and without comorbidities, and tried to connect structural data and behavioral executive dysfunction to provide more information regarding the brain-behavior relationships in ADHD. Seventy-two male subjects (37 patients and 35 controls) underwent three-dimensional high-resolution structural magnetic resonance imaging and executive function assessments, including the Stroop Color-Word Test and Wisconsin Card Sorting Test (WCST). Voxel-based morphometry with diffeomorphic anatomical registration through exponentiated Lie algebra was used to identify gray matter volume differences between the ADHD and controls. Correlation analyses were performed to identify neuroanatomical deficits that were associated with executive dysfunctions. Significantly reduced gray matter volumes were identified in the right orbitofrontal cortex, right primary motor/premotor cortex, left anterior cingulate cortex and left posterior midcingulate cortex of ADHD patients compared with controls (P<0.05, corrected for family-wise errors). In patients group, the gray matter volumes of the right orbitofrontal cortex and left posterior midcingulate cortex were positively correlated with the completed categories on the WCST, and the gray matter volume of the left posterior midcingulate cortex was negatively correlated with the total and non-perseverative errors on the WCST (P<0.05). The present findings show gray matter volume reductions in motor regions as well as the orbitofrontal and cingulate cortex; this evidence supports theories that suggest frontal abnormalities in children and adolescents with ADHD at early illness stage. The correlations between structural abnormalities and executive dysfunction suggest that neuroanatomical substrate deficits are implicated in the pathophysiology of ADHD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…