-
Kidney international · Oct 1999
The transforming growth factor-beta/SMAD signaling pathway is present and functional in human mesangial cells.
- A C Poncelet, M P de Caestecker, and H W Schnaper.
- Department of Pediatrics and Children's Memorial Institute for Education and Research, Northwestern University Medical School, Chicago, Illinois, USA. anne-c@nwu.edu
- Kidney Int. 1999 Oct 1; 56 (4): 1354-65.
BackgroundTransforming growth factor-beta (TGF-beta) signals through a unique set of intracellular proteins, called SMADs, that have been characterized mainly in transient overexpression systems. Because several models of glomerulosclerosis suggest a role for TGF-beta in the extracellular matrix accumulation, we sought to characterize the role of SMAD proteins in mediating TGF-beta1 responses in a more physiological system using nontransformed human mesangial cells.MethodsEndogenous SMAD expression and its modulation by TGF-beta1 were evaluated by Western and Northern blot analyses. Phosphorylation of Smad2 and Smad3 was determined by both phospholabeling and immunoblot. SMAD function and its role in type I collagen transcription were investigated in cotransfection experiments using promoter-luciferase reporter gene constructs.ResultsCultured human mesangial cells express Smad2, Smad3, and Smad4 proteins. TGF-beta1 down-regulated Smad3 mRNA and protein expression, respectively, after 4 and 24 hours of treatment, whereas Smad2 and Smad4 were less affected. Both Smad2 and Smad3 were phosphorylated in response to TGF-beta1 beginning at 5 minutes, with maximal phosphorylation at 15 minutes, and decreasing phosphorylation by 2 hours. Smad2/3 and Smad4 coimmunoprecipitate only after TGF-beta1 treatment. The activity of a transiently transfected, TGF-beta-responsive construct, p3TP-Lux, was stimulated 3.6-fold by TGF-beta1. Overexpressed wild-type Smad3 increased basal luciferase activity, which was further stimulated by TGF-beta1. A dominant negative mutant form of Smad3 lacking the C-terminal serine phosphoacceptor sites (Smad3A) inhibited TGF-beta1-induced luciferase activity. TGF-beta1 also increased the activation of an alpha2(I) collagen promoter-luciferase reporter construct transfected into mesangial cells. This activation was inhibited by cotransfection with the Smad3A mutant.ConclusionsSmad2, Smad3, and Smad4 are present and activated by TGF-beta1 in human mesangial cells. The SMAD pathway is functional in these cells and appears to be involved in TGF-beta1-induced type I collagen gene transcription. These findings raise the possibility that SMAD signaling plays a role in glomerular matrix accumulation.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.