-
Int. J. Radiat. Oncol. Biol. Phys. · Jul 1999
The dependence of prostate postimplant dosimetric quality on CT volume determination.
- G S Merrick, W M Butler, A T Dorsey, and J H Lief.
- Schiffler Oncology Center, Wheeling Hospital, WV 26003-6300, USA. oncology@hgo.net
- Int. J. Radiat. Oncol. Biol. Phys. 1999 Jul 15; 44 (5): 1111-7.
PurposeThe postoperative evaluation of permanent prostate brachytherapy requires a subjective determination of the implant volume. This work investigates the magnitude of the effect that various methods of treatment volume delineation have on dosimetric quality parameters for a treatment planning philosophy that defines a target volume as the prostate with a periprostatic margin.Methods And MaterialsEight consecutive prostate brachytherapy patients with a prescribed dose of 145 Gy from 125I as monotherapy comprised the study population. The prostate ultrasound volume was enlarged to a planning volume by an average factor of 1.8 to encompass probable extracapsular extension in the periprostatic region. For this cohort, the mean pretreatment parameters were 30.3 cm3 ultrasound volume, 51.8 cm3 planning volume, 131 seeds per patient, and 42.9 mCi total activity. On CT study sets obtained less than 2 hours postoperatively, target volumes were drawn using three methods: prostate plus a periprostatic margin, prostate only which excluded the puborectalis muscles, the periprostatic fat and the periprostatic venous plexus, and the preplanning ultrasound magnified to conform to the magnification factor of the postimplant CT scan. Three sets of 5 dosimetric quality parameters corresponding to the different volumetric approaches were calculated: V100, V150, and V200 which are the fractions of the target volume covered by 100, 150, and 200% of the prescribed dose, and D90 and D100, which are the minimal doses covering 90 and 100% of the target volume.ResultsThe postoperative CT volume utilizing the prostate plus margin technique was comparable to the initial planning volume (mean 55.5 cm3 vs. 51.8 cm3, respectively) whereas those determined via superimposing the preplan ultrasound resulted in volumes nearly identical to the initial ultrasound evaluation (mean 32.4 cm3 vs. 30.3 cm3). The prostate only approach resulted in volumes approximately 25% larger than the ultrasound volume approach. Despite the volume determinations being markedly different, no significant differences between the approaches were appreciated for V100, V150, V200, and D90. Large variations seen in D100 were uncorrelated to any of the other parameters and make D100 unsuitable as a quality indicator.ConclusionsIn terms of a logarithmic measure, the variation between volumetric approach for V100, V150, V200, and D90 was less than one-fifth the variation of the CT volumes. These results which indicate relative independence of postimplant CT volume determination and dosimetric quality are only valid for a planning philosophy that includes the prostate with a periprostatic margin as the target volume.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.