• Am. J. Physiol. Renal Physiol. · Jan 2006

    A model of glucose transport and conversion to lactate in the renal medullary microcirculation.

    • Wensheng Zhang and Aurélie Edwards.
    • Department of Chemical and Biological Engineering, Tufts Univ., Medford, MA 02155, USA.
    • Am. J. Physiol. Renal Physiol. 2006 Jan 1; 290 (1): F87-102.

    AbstractIn this study, we modeled mathematically the transport of glucose across renal medullary vasa recta and its conversion to lactate by anaerobic glycolysis. Uncertain parameter values were determined by seeking good agreement between predictions and experimental measurements of lactate generation rates, as well as glucose and lactate concentration ratios between the papilla and the corticomedullary junction; plausible kinetic rate constant and permeability values are summarized in tabular form. Our simulations indicate that countercurrent exchange of glucose from descending (DVR) to ascending vasa recta (AVR) in the outer medulla (OM) and upper inner medulla (IM) severely limits delivery to the deep inner medulla, thereby limiting medullary lactate generation. If the permeability to glucose of OMDVR and IMDVR is taken to be the same and equal to 4 x 10(-4) cm/s, the fraction of glucose that bypasses the IM is calculated as 54%; it is predicted as 37% if the presence of pericytes in OMDVR reduces the glucose permeability of these vessels by a factor of 2 relative to that of IMDVR. Our results also suggest that red blood cells (RBCs) act as a reservoir that reduces the bypass of glucose from DVR to AVR. The rate of lactate generation by anaerobic glycolysis of glucose supplied by blood from glomerular efferent arterioles is predicted to range from 2 to 8 nmol/s, in good agreement with lower estimates obtained from the literature (Bernanke D and Epstein FH. Am J Physiol 208: 541-545, 1965; Bartlett S, Espinal J, Janssens P, and Ross BD. Biochem J 219: 73-78, 1984).

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.