• J. Am. Soc. Nephrol. · Apr 2002

    Human cortical distal nephron: distribution of electrolyte and water transport pathways.

    • Helena Lagger Biner, Marie-Pierre Arpin-Bott, Johannes Loffing, Xiaoyan Wang, Mark Knepper, Steve C Hebert, and Brigitte Kaissling.
    • *Anatomical Department, University of Zurich, Zurich, Switzerland; UMR CNRS 7519, University Louis Pasteur, Strasbourg, France; National Heart, Lung, and Blood Institute, Bethesda, Maryland; and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut.
    • J. Am. Soc. Nephrol. 2002 Apr 1; 13 (4): 836-847.

    AbstractThe exact distributions of the different salt transport systems along the human cortical distal nephron are unknown. Immunohistochemistry was performed on serial cryostat sections of healthy parts of tumor nephrectomized human kidneys to study the distributions in the distal convolution of the thiazide-sensitive Na-Cl cotransporter (NCC), the beta subunit of the amiloride-sensitive epithelial Na channel (ENaC), the vasopressin-sensitive water channel aquaporin 2 (AQP2), and aquaporin 3 (AQP3), the H(+) ATPase, the Na-Ca exchanger (NCX), plasma membrane calcium-ATPase, and calbindin-D28k (CaBP). The entire human distal convolution and the cortical collecting duct (CCD) display calbindin-D28k, although in variable amounts. Approximately 30% of the distal convolution profiles reveal NCC, characterizing the distal convoluted tubule. NCC overlaps with ENaC in a short portion at the end of the distal convoluted tubule. ENaC is displayed all along the connecting tubule (70% of the distal convolution) and the CCD. The major part of the connecting tubule and the CCD coexpress aquaporin 2 with ENaC. Intercalated cells, undetected in the first 20% of the distal convolution, were interspersed among the segment-specific cells of the remainder of the distal convolution, and of the CCD. The basolateral calcium extruding proteins, Na-Ca exchanger (NCX), and the plasma membrane Ca(2+)-ATPase were found all along the distal convolution, and, in contrast to other species, along the CCD, although in varying amounts. The knowledge regarding the precise distribution patterns of transport proteins in the human distal nephron and the knowledge regarding the differences from that in laboratory animals may be helpful for diagnostic purposes and may also help refine the therapeutic management of electrolyte disorders.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.