• JAMA network open · Aug 2019

    Machine Learning Identification of Surgical and Operative Factors Associated With Surgical Expertise in Virtual Reality Simulation.

    • Alexander Winkler-Schwartz, Recai Yilmaz, Nykan Mirchi, Vincent Bissonnette, Nicole Ledwos, Samaneh Siyar, Hamed Azarnoush, Bekir Karlik, and Rolando Del Maestro.
    • Neurosurgical Simulation and Artificial Intelligence Learning Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.
    • JAMA Netw Open. 2019 Aug 2; 2 (8): e198363.

    ImportanceDespite advances in the assessment of technical skills in surgery, a clear understanding of the composites of technical expertise is lacking. Surgical simulation allows for the quantitation of psychomotor skills, generating data sets that can be analyzed using machine learning algorithms.ObjectiveTo identify surgical and operative factors selected by a machine learning algorithm to accurately classify participants by level of expertise in a virtual reality surgical procedure.Design, Setting, And ParticipantsFifty participants from a single university were recruited between March 1, 2015, and May 31, 2016, to participate in a case series study at McGill University Neurosurgical Simulation and Artificial Intelligence Learning Centre. Data were collected at a single time point and no follow-up data were collected. Individuals were classified a priori as expert (neurosurgery staff), seniors (neurosurgical fellows and senior residents), juniors (neurosurgical junior residents), and medical students, all of whom participated in 250 simulated tumor resections.ExposuresAll individuals participated in a virtual reality neurosurgical tumor resection scenario. Each scenario was repeated 5 times.Main Outcomes And MeasuresThrough an iterative process, performance metrics associated with instrument movement and force, resection of tissues, and bleeding generated from the raw simulator data output were selected by K-nearest neighbor, naive Bayes, discriminant analysis, and support vector machine algorithms to most accurately determine group membership.ResultsA total of 50 individuals (9 women and 41 men; mean [SD] age, 33.6 [9.5] years; 14 neurosurgeons, 4 fellows, 10 senior residents, 10 junior residents, and 12 medical students) participated. Neurosurgeons were in practice between 1 and 25 years, with 9 (64%) involving a predominantly cranial practice. The K-nearest neighbor algorithm had an accuracy of 90% (45 of 50), the naive Bayes algorithm had an accuracy of 84% (42 of 50), the discriminant analysis algorithm had an accuracy of 78% (39 of 50), and the support vector machine algorithm had an accuracy of 76% (38 of 50). The K-nearest neighbor algorithm used 6 performance metrics to classify participants, the naive Bayes algorithm used 9 performance metrics, the discriminant analysis algorithm used 8 performance metrics, and the support vector machine algorithm used 8 performance metrics. Two neurosurgeons, 1 fellow or senior resident, 1 junior resident, and 1 medical student were misclassified.Conclusions And RelevanceIn a virtual reality neurosurgical tumor resection study, a machine learning algorithm successfully classified participants into 4 levels of expertise with 90% accuracy. These findings suggest that algorithms may be capable of classifying surgical expertise with greater granularity and precision than has been previously demonstrated in surgery.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…