• Am. J. Physiol. Heart Circ. Physiol. · Apr 2009

    Transient opening of mitochondrial permeability transition pore by reactive oxygen species protects myocardium from ischemia-reperfusion injury.

    • Masao Saotome, Hideki Katoh, Yasuhiro Yaguchi, Takamitsu Tanaka, Tsuyoshi Urushida, Hiroshi Satoh, and Hideharu Hayashi.
    • Division of Cardiology, Internal Medicine III, Hamamatsu Univ. School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan. msaotome@hama-med.ac.jp
    • Am. J. Physiol. Heart Circ. Physiol. 2009 Apr 1;296(4):H1125-32.

    AbstractReactive oxygen species (ROS) production during ischemia-reperfusion (I/R) is thought to be a critical factor for myocardial injury. However, a small amount of ROS during the ischemic preconditioning (IPC) may provide a signal for cardioprotection. We have previously reported that the repetitive pretreatment of a small amount of ROS [hydrogen peroxide (H(2)O(2)), 2 microM] mimicked the IPC-induced cardioprotection in the Langendorff-perfused rat hearts. We further investigated the mechanisms of the ROS-induced cardioprotection against I/R injury and tested the hypothesis whether it could mediate the mitochondrial permeability transition pore (mPTP) opening. The Langendorff-perfused rat hearts were subjected to 35 min ischemia and 40 min reperfusion, and the pretreatment of H(2)O(2) (2 microM) significantly improved the postischemic recoveries in left ventricular developed pressure, intracellular phosphocreatine, and ATP levels. A specific mPTP inhibitor cyclosporin A (CsA; 0.2 microM) canceled these H(2)O(2)-induced effects. In isolated permeabilized myocytes, H(2)O(2) (1 microM) accelerated the calcein leakage from mitochondria in a CsA-sensitive manner, indicating the opening of mPTP by H(2)O(2). However, H(2)O(2) did not depolarize mitochondrial membrane potential (DeltaPsi(m)) even in the presence of oligomycin (F(1)/F(0) ATPase inhibitor; 1 microM) and decreased mitochondrial Ca(2+) concentration ([Ca(2+)](m)) by accelerating the mitochondrial Ca(2+) extrusion via an mPTP. We conclude that the transient mPTP opening could be involved in the H(2)O(2)-induced cardioprotection against reperfusion injury, and the reduction of [Ca(2+)](m) without the change in DeltaPsi(m) might be a possible mechanism for the protection.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.