• IEEE Trans Med Imaging · Nov 2007

    Representing diffusion MRI in 5-D simplifies regularization and segmentation of white matter tracts.

    • Lisa Jonasson, Xavier Bresson, Jean-Philippe Thiran, Van J Wedeen, and Patric Hagmann.
    • Signal Processing Institute (ITS), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland. lisa.jonasson@gmail.com
    • IEEE Trans Med Imaging. 2007 Nov 1; 26 (11): 1547-54.

    AbstractWe present a new five-dimensional (5-D) space representation of diffusion magnetic resonance imaging (dMRI) of high angular resolution. This 5-D space is basically a non-Euclidean space of position and orientation in which crossing fiber tracts can be clearly disentangled, that cannot be separated in three-dimensional position space. This new representation provides many possibilities for processing and analysis since classical methods for scalar images can be extended to higher dimensions even if the spaces are not Euclidean. In this paper, we show examples of how regularization and segmentation of dMRI is simplified with this new representation. The regularization is used with the purpose of denoising and but also to facilitate the segmentation task by using several scales, each scale representing a different level of resolution. We implement in five dimensions the Chan-Vese method combined with active contours without edges for the segmentation and the total variation functional for the regularization. The purpose of this paper is to explore the possibility of segmenting white matter structures directly as entirely separated bundles in this 5-D space. We will present results from a synthetic model and results on real data of a human brain acquired with diffusion spectrum magnetic resonance imaging (MRI), one of the dMRI of high angular resolution available. These results will lead us to the conclusion that this new high-dimensional representation indeed simplifies the problem of segmentation and regularization.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.