• IEEE Trans Med Imaging · Sep 2007

    Shape-based normalization of the corpus callosum for DTI connectivity analysis.

    • Hui Sun, Paul A Yushkevich, Hui Zhang, Philip A Cook, Jeffrey T Duda, Tony J Simon, and James C Gee.
    • Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA . sunhui@seas.upenn.edu
    • IEEE Trans Med Imaging. 2007 Sep 1; 26 (9): 1166-78.

    AbstractThe continuous medial representation (cm-rep) is an approach that makes it possible to model, normalize, and analyze anatomical structures on the basis of medial geometry. Having recently presented a partial differential equation (PDE)-based approach for 3-D cm-rep modeling [1], here we present an equivalent 2-D approach that involves solving an ordinary differential equation. This paper derives a closed form solution of this equation and shows how Pythagorean hodograph curves can be used to express the solution as a piecewise polynomial function, allowing efficient and robust medial modeling. The utility of the approach in medical image analysis is demonstrated by applying it to the problem of shape-based normalization of the midsagittal section of the corpus callosum. Using diffusion tensor tractography, we show that shape-based normalization aligns subregions of the corpus callosum, defined by connectivity, more accurately than normalization based on volumetric registration. Furthermore, shape-based normalization helps increase the statistical power of group analysis in an experiment where features derived from diffusion tensor tractography are compared between two cohorts. These results suggest that cm-rep is an appropriate tool for normalizing the corpus callosum in white matter studies.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…