• J. Vasc. Surg. · Sep 2019

    Quantitative assessment of carotid plaque morphology (geometry and tissue composition) using computed tomography angiography.

    • Matthew T Chrencik, Amir A Khan, Lauren Luther, Laila Anthony, John Yokemick, Jigar Patel, John D Sorkin, Siddhartha Sikdar, and Brajesh K Lal.
    • Department of Vascular Surgery, University of Maryland School of Medicine, Baltimore, Md; Vascular Service, Veterans Affairs Medical Center, Baltimore, Md.
    • J. Vasc. Surg. 2019 Sep 1; 70 (3): 858-868.

    ObjectiveQuantification of carotid plaque morphology (geometry and tissue composition) may help stratify risk for future stroke and assess plaque progression or regression in response to medical risk factor modification. We assessed the feasibility and reliability of morphologic measurements of carotid plaques using computed tomography angiography (CTA) and determined the minimum detectable change in plaque features by this approach.MethodsCTA images of both carotid arteries in 50 patients were analyzed by two observers using a semiautomatic image analysis program, yielding 93 observations per user (seven arteries were excluded because of prior stenting). One observer repeated the analyses 4 weeks later. Measurements included total plaque volume; percentage stenosis (by diameter and area); and tissue composition for calcium, lipid-rich necrotic core (LRNC), and intraplaque hemorrhage (IPH). Reliability of measurements was assessed by intraclass and interclass correlation and Bland-Altman plots. Dice similarity coefficient (DSC) and modified Hausdorff distance (MHD) assessed reliability of geometric shape measurements. We additionally computed the minimum amount of change in these features detectable by our approach.ResultsThe cohort was 51% male (mean age, 70.1 years), and 56% had a prior stroke. The mean (± standard deviation) plaque volume was 837.3 ± 431.3 mm3, stenosis diameter was 44.5% ± 25.6%, and stenosis area was 58.1% ± 29.0%. These measurements showed high reliability. Intraclass correlation coefficients for plaque volume, percentage stenosis by diameter, and percentage stenosis by area were 0.96, 0.87, and 0.83, respectively; interclass correlation coefficients were 0.88, 0.84, and 0.78. Intraclass correlations for tissue composition were 0.99, 0.96, and 0.86 (calcium, LRNC, and IPH, respectively), and interclass correlations were 0.99, 0.92, and 0.92. Shape measurements showed high intraobserver (DSC, 0.95 ± 0.04; MHD, 0.16 ± 0.10 mm) and interobserver (DSC, 0.94 ± 0.05; MHD, 0.19 ± 0.12 mm) luminal agreement. This approach can detect a change of at least 3.9% in total plaque volume, 1.2 mm3 in calcium, 4.3 mm3 in LRNC, and 8.6 mm3 in IPH with the same observer repeating measurements and 9.9% in plaque volume, 1.9 mm3 in calcium, 7.9 mm3 in LRNC, and 6.8 mm3 in IPH for two different observers.ConclusionsCarotid plaque geometry (total volume, diameter stenosis, and area stenosis) and tissue composition (calcium, LRNC, and IPH) are measured reliably from clinical CTA images using a semiautomatic image analysis program. The minimum change in plaque volume detectable is ∼4% if the same observer makes both measurements and ∼10% for different observers. Small changes in plaque composition can also be detected reliably. This approach can facilitate longitudinal studies for identifying high-risk plaque features and for quantifying plaque progression or regression after treatment.Copyright © 2019 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…