• J. Neurosci. · Feb 2017

    Limited Cognitive Resources Explain a Trade-Off between Perceptual and Metacognitive Vigilance.

    • Brian Maniscalco, Li Yan McCurdy, Brian Odegaard, and Hakwan Lau.
    • Neuroscience Institute, New York University, New York, New York 10016, brian@psych.columbia.edu.
    • J. Neurosci. 2017 Feb 1; 37 (5): 1213-1224.

    AbstractWhy do experimenters give subjects short breaks in long behavioral experiments? Whereas previous studies suggest it is difficult to maintain attention and vigilance over long periods of time, it is unclear precisely what mechanisms benefit from rest after short experimental blocks. Here, we evaluate decline in both perceptual performance and metacognitive sensitivity (i.e., how well confidence ratings track perceptual decision accuracy) over time and investigate whether characteristics of prefrontal cortical areas correlate with these measures. Whereas a single-process signal detection model predicts that these two forms of fatigue should be strongly positively correlated, a dual-process model predicts that rates of decline may dissociate. Here, we show that these measures consistently exhibited negative or near-zero correlations, as if engaged in a trade-off relationship, suggesting that different mechanisms contribute to perceptual and metacognitive decisions. Despite this dissociation, the two mechanisms likely depend on common resources, which could explain their trade-off relationship. Based on structural MRI brain images of individual human subjects, we assessed gray matter volume in the frontal polar area, a region that has been linked to visual metacognition. Variability of frontal polar volume correlated with individual differences in behavior, indicating the region may play a role in supplying common resources for both perceptual and metacognitive vigilance. Additional experiments revealed that reduced metacognitive demand led to superior perceptual vigilance, providing further support for this hypothesis. Overall, results indicate that during breaks between short blocks, it is the higher-level perceptual decision mechanisms, rather than lower-level sensory machinery, that benefit most from rest.Copyright © 2017 the authors 0270-6474/17/371213-12$15.00/0.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.