• Brain topography · Jan 2007

    Estimate of causality between independent cortical spatial patterns during movement volition in spinal cord injured patients.

    • Laura Astolfi, Hovagim Bakardjian, Febo Cincotti, Donatella Mattia, Maria Grazia Marciani, Fabrizio De Vico Fallani, Alfredo Colosimo, Serenella Salinari, Fumikazu Miwakeichi, Yoko Yamaguchi, Pablo Martinez, Andrzej Cichocki, Andrea Tocci, and Fabio Babiloni.
    • IRCCS Fondazione Santa Lucia, Rome, Italy.
    • Brain Topogr. 2007 Jan 1; 19 (3): 107-23.

    AbstractStatic hemodynamic or neuroelectric images of brain regions activated during particular tasks do not convey the information of how these regions communicate to each other. Cortical connectivity estimation aims at describing these interactions as connectivity patterns which hold the direction and strength of the information flow between cortical areas. In this study, we attempted to estimate the causality between distributed cortical systems during a movement volition task in preparation for execution of simple movements by a group of normal healthy subjects and by a group of Spinal Cord Injured (SCI) patients. To estimate the causality between the spatial distributed patterns of cortical activity in the frequency domain, we applied a series of processing steps on the recorded EEG data. From the high-resolution EEG recordings we estimated the cortical waveforms for the regions of interest (ROIs), each representing a selected sensor group population. The solutions of the linear inverse problem returned a series of cortical waveforms for each ROI considered and for each trial analyzed. For each subject, the cortical waveforms were then subjected to Independent Component Analysis (ICA) pre-processing. The independent components obtained by the application of the ThinICA algorithm were further processed by a Partial Directed Coherence algorithm, in order to extract the causality between spatial cortical patterns of the estimated data. The source-target cortical dependencies found in the group of normal subjects were relatively similar in all frequency bands analyzed. For the normal subjects we observed a common source pattern in an ensemble of cortical areas including the right parietal and right lip primary motor areas and bilaterally the primary foot and posterior SMA areas. The target of this cortical network, in the Granger-sense of causality, was shown to be a smaller network composed mostly by the primary foot motor areas and the posterior SMA bilaterally. In the case of the SCI population, both the source and the target cortical patterns had larger sizes than in the normal population. The source cortical areas included always the primary foot and lip motor areas, often bilaterally. In addition, the right parietal area and the bilateral premotor area 6 were also involved. Again, the patterns remained substantially stable across the different frequency bands analyzed. The target cortical patterns observed in the SCI population had larger extensions when compared to the normal ones, since in most cases they involved the bilateral activation of the primary foot movement areas as well as the SMA, the primary lip areas and the parietal cortical areas.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.