• Am. J. Physiol. Lung Cell Mol. Physiol. · Feb 2012

    The dopamine D(2) receptor is expressed and sensitizes adenylyl cyclase activity in airway smooth muscle.

    • Kentaro Mizuta, Yi Zhang, Dingbang Xu, Eiji Masaki, Reynold A Panettieri, and Charles W Emala.
    • Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York, USA. mizuta@m.tohoku.ac.jp
    • Am. J. Physiol. Lung Cell Mol. Physiol. 2012 Feb 1; 302 (3): L316-24.

    AbstractDopamine receptors are G protein-coupled receptors that are divided into two subgroups, "D(1)-like" receptors (D(1) and D(5)) that couple to the G(s) protein and "D(2)-like" receptors (D(2), D(3), and D(4)) that couple to G(i). Although inhaled dopamine has been reported to induce bronchodilation in patients with asthma, functional expression of dopamine receptor subtypes has never been described on airway smooth muscle (ASM) cells. Acute activation of G(i)-coupled receptors inhibits adenylyl cyclase activity and cAMP synthesis, which classically impairs ASM relaxation. In contrast, chronic activation of G(i)-coupled receptors produces a paradoxical enhancement of adenylyl cyclase activity referred to as heterologous sensitization. We questioned whether the dopamine D(2)-like receptor is expressed on ASM, whether it exhibits classical G(i)-coupling, and whether it modulates ASM function. We detected the mRNA encoding the dopamine D(2) receptor in total RNA isolated from native human ASM and from cultured human airway smooth muscle (HASM) cells. Immunoblots identified the dopamine D(2) receptor protein in both native human and guinea pig ASM and cultured HASM cells. The dopamine D(2) receptor protein was immunohistochemically localized to both human and guinea pig ASM. Acute activation of the dopamine D(2) receptor by quinpirole inhibited forskolin-stimulated adenylyl cyclase activity in HASM cells, which was blocked by the dopamine D(2) receptor antagonist L-741626. In contrast, the chronic pretreatment (1 h) with quinpirole potentiated forskolin-stimulated adenylyl cyclase activity, which was inhibited by L-741626, the phospholipase C inhibitor U73122, or the protein kinase C inhibitor GF109203X. Quinpirole also stimulated inositol phosphate synthesis, which was inhibited by L-741626 or U73122. Chronic pretreatment (1 h) of the guinea pig tracheal rings with quinpirole significantly potentiated forskolin-induced airway relaxation, which was inhibited by L-741626. These results demonstrate that functional dopamine D(2) receptors are expressed on ASM and could be a novel therapeutic target for the relaxation of ASM.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.