• Radiation research · Apr 1983

    Comparative Study

    Dose-rate effects in mammalian cells. IV. Repairable and nonrepairable damage in noncycling C3H 10T 1/2 cells.

    • R L Wells and J S Bedford.
    • Radiat. Res. 1983 Apr 1; 94 (1): 105-34.

    AbstractRepairable and nonrepairable components of gamma-ray damage leading to cell reproductive death were determined by measuring the range over which dose rate influenced the response of non-cycling C3H 10T 1/2 mouse cells. Cell proliferation and cell cycle redistribution were eliminated as factors influencing the dose-rate effect in the system by irradiating confluent monolayers of contact inhibited cells. The radiosensitivity of the cells did not change, and no selective loss of damaged cells occurred over the extended treatment times. A pronounced dose-rate effect was observed over the range between 55.6 and 0.29 Gy/hr, but a limit to the repair-dependent dose-rate effect was reached at 0.29 Gy/hr since no further reduction in effect per unit dose was observed when the dose rate was reduced to 0.17 or 0.06 Gy/hr. The survival curves, which were simple exponential functions of dose at dose rates of 0.29 Gy/hr and below, have a common Do of 7.32 Gy and represent an accurate measurement of the nonrepairable component of damage. Log-phase cultures showed remarkably different responses over the range of dose rates, due in large part to cell cycle redistribution and in some cases, cell proliferation during exposures. The results of these studies were compared with time-dose relationships used in clinical brachy-therapy and agree remarkably well with corrections in total dose suggested by R. Paterson [Br. J. Radiol. 25, 505-516 (1952)] and A.E.S. Green [cited in F. Ellis, Curr. Top. Radiat. Res. Q. 4, 357-397 (1968)] when the standard treatment time is changed. Comparison of our data with in vivo isoeffect curves of total dose vs dose per fraction for "early" and "late" tissue responses indicate that cell cycle redistribution should not be ignored as a factor influencing time-dose relationships in radiotherapy.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…