• Auton Neurosci · May 2004

    Comparative Study

    Enhanced cardiac vagal efferent activity does not explain training-induced bradycardia.

    • Adrienne S Scott, André Eberhard, Dror Ofir, Gila Benchetrit, Tuan Pham Dinh, Pascale Calabrese, Veronika Lesiuk, and Hélène Perrault.
    • Department of Kinesiology and Physical Education and Respiratory Division of the Montreal Chest Institute of the McGill University Health Center, McGill University, 3650 St. Urbain, Room K1.25, Montreal, Quebec, Canada H2X 2P4.
    • Auton Neurosci. 2004 May 31; 112 (1-2): 60-8.

    AbstractStudies of heart rate variability (HRV) have so far produced contradictory evidence to support the common belief that endurance training enhances cardiac parasympathetic tone. This may be related to the fact that most studies failed to specifically isolate the vagally mediated influence of respiration. This study used a cross-sectional comparison of endurance athletes (n=20; ATHL) exhibiting resting bradycardia and age-matched nonathletes (n=12; CRTL) to indirectly assess training effects on amplitude and timing characteristics of respiratory sinus arrhythmia (RSA). Continuous electrocardiogram (ECG) and ventilatory flows were recorded during spontaneous breathing (SP), as well as during breathing at four cycles less than (M4) or more (P4) than SP, to also examine potential repercussions of training on the sensitivity of the cardiac vagal responses to breathing. A fast Fourier transform procedure was used to quantify the standard spectral high-frequency (HF) and low-frequency (LF) components and a respiratory-centered frequency (RCF) component of HRV. RSA was assessed using a breath-by-breath quantification of the amplitude and timing of the maximum change in instantaneous heart rate. Under baseline SP conditions, heart rate was lower in ATHL (62.6+/-6.5 vs. 75.2+/-9 beats/min; p<0.05) while blood pressure (BP), breath cycle duration, tidal volume, and ventilatory drive were similar in both groups. HRV total spectral power density, LF, HF, or RCF was not different between groups at either the SP, M4, or P4 conditions. Changes in total breath duration similarly affected RSA amplitude in all groups, while HR and BP remained unchanged from SP. RSA phase was not affected by training status or by changes in total breath duration. RSA amplitude was negatively related to breathing frequency in all groups (p<0.05), while the mean slope of the relationship (sensitivity) was not different between groups. In as much as RSA is an adequate marker of cardiac vagal efferent activity, these results add support to a contribution of a decrease in intrinsic heart rate to explain training-induced bradycardia.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.