• J. Theor. Biol. · Dec 2014

    Review

    Pathway and network analysis in proteomics.

    • Xiaogang Wu, Mohammad Al Hasan, and Jake Yue Chen.
    • Institute of Biopharmaceutical Informatics and Technology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China; School of Informatics and Computing, Indiana University-Purdue University, Indianapolis, IN 46202, USA; Institute for Systems Biology, Seattle, WA 98109, USA.
    • J. Theor. Biol. 2014 Dec 7; 362: 44-52.

    AbstractProteomics is inherently a systems science that studies not only measured protein and their expressions in a cell, but also the interplay of proteins, protein complexes, signaling pathways, and network modules. There is a rapid accumulation of Proteomics data in recent years. However, Proteomics data are highly variable, with results sensitive to data preparation methods, sample condition, instrument types, and analytical methods. To address the challenge in Proteomics data analysis, we review current tools being developed to incorporate biological function and network topological information. We categorize these tools into four types: tools with basic functional information and little topological features (e.g., GO category analysis), tools with rich functional information and little topological features (e.g., GSEA), tools with basic functional information and rich topological features (e.g., Cytoscape), and tools with rich functional information and rich topological features (e.g., PathwayExpress). We first review the potential application of these tools to Proteomics; then we review tools that can achieve automated learning of pathway modules and features, and tools that help perform integrated network visual analytics. Copyright © 2014 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.