• Curr Pain Headache Rep · Jul 2021

    Review

    Ketamine in the Past, Present, and Future: Mechanisms, Metabolites, and Toxicity.

    • Eric S Schwenk, Basant Pradhan, Rohit Nalamasu, Lucas Stolle, Irving W Wainer, Michael Cirullo, Alexander Olson, Joseph V Pergolizzi, Marc C Torjman, and Eugene R Viscusi.
    • Department of Anesthesiology, Sidney Kimmel Medical College at Thomas Jefferson University, 111 South 11th Street, Gibbon Building, 8290, Philadelphia, PA, 19107, USA. Eric.Schwenk@jefferson.edu.
    • Curr Pain Headache Rep. 2021 Jul 16; 25 (9): 57.

    Purpose Of ReviewWhile ketamine's analgesia has mostly been attributed to antagonism of N-methyl-D-aspartate receptors, evidence suggests multiple other pathways are involved in its antidepressant and possibly analgesic activity. These mechanisms and ketamine's role in the nociplastic pain paradigm are discussed. Animal studies demonstrating ketamine's neurotoxicity have unclear human translatability and findings from key rodent and human studies are presented.Recent FindingsKetamine's metabolites, and (2R,6R)-hydroxynorketamine in particular, may play a greater role in its clinical activity than previously believed. The activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and the mammalian target of rapamycin by ketamine are mechanisms that are still being elucidated. Ketamine might work best in nociplastic pain, which involves altered pain processing. While much is known about ketamine, new studies will continue to define its role in clinical medicine. Evidence supporting ketamine's neurotoxicity in humans is lacking and should not impede future ketamine clinical trials.© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.