• J. Biol. Chem. · Dec 2001

    Mitochondrial respiration is uniquely associated with the prooxidant and apoptotic effects of N-(4-hydroxyphenyl)retinamide.

    • N Hail and R Lotan.
    • Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
    • J. Biol. Chem. 2001 Dec 7; 276 (49): 45614-21.

    AbstractThe synthetic retinoid N-(4-hydroxyphenyl)retinamide (4HPR) is being examined in both chemoprevention and therapy clinical trials. Yet, its mechanism(s) of action is still not fully elucidated. In previous studies, an increase in mitochondrial reactive oxygen species has been proposed as one mechanism through which 4HPR could exert its proapoptotic effects. This study explored whether mitochondrial respiration is required for 4HPR action using human cutaneous squamous cell carcinoma cells and respiration-deficient clones. In parental cells, 4HPR rapidly promoted hydroperoxide production followed by mitochondrial permeability transition, caspase activity, and DNA fragmentation. Short term exposure to 4HPR also inhibited oxygen consumption in parental cells. This activity was reversed by the antioxidant vitamin C indicating the prooxidant effect of 4HPR directly impaired mitochondrial function. In respiration-deficient clones, the proapoptotic qualities of 4HPR were conspicuously diminished illustrating a central role for mitochondrial respiration in 4HPR-induced cell death. In parental cells, various mitochondrial inhibitors were examined to determine potential sites associated with the prooxidant activity of 4HPR. Inhibitors of Complex II as well as center i inhibitors of Complex III enhanced 4HPR-induced hydroperoxide production. Complex I inhibitors, center o inhibitors of Complex III, cyanide, oligomycin A, and coenzyme Q analogues decreased 4HPR-induced hydroperoxide production. The coenzyme Q analogues were very effective in this respect, and they also blocked the enhanced hydroperoxide production obtained when center i inhibitors were combined with 4HPR. These results suggest the prooxidant property of 4HPR is associated with redox metabolism via an enzymatic process occurring at a quinone-binding site in Complex I and/or center o of Complex III.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.