-
Critical care medicine · Oct 2021
Meta AnalysisNeuroprognostic Accuracy of Quantitative Versus Standard Pupillary Light Reflex for Adult Postcardiac Arrest Patients: A Systematic Review and Meta-Analysis.
- Chih-Hung Wang, Cheng-Yi Wu, Carolyn Chia-Yu Liu, Tzu-Chun Hsu, Michael A Liu, Meng-Che Wu, Min-Shan Tsai, Wei-Tien Chang, Chien-Hua Huang, Chien-Chang Lee, Shyr-Chyr Chen, and Wen-Jone Chen.
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan.
- Crit. Care Med. 2021 Oct 1; 49 (10): 179017991790-1799.
ObjectivesAn automated infrared pupillometer measures quantitative pupillary light reflex using a calibrated light stimulus. We examined whether the timing of performing quantitative pupillary light reflex or standard pupillary light reflex may impact its neuroprognostic performance in postcardiac arrest comatose patients and whether quantitative pupillary light reflex may outperform standard pupillary light reflex in early postresuscitation phase.Data SourcesPubMed and Embase databases from their inception to July 2020.Study SelectionWe selected studies providing sufficient data of prognostic values of standard pupillary light reflex or quantitative pupillary light reflex to predict neurologic outcomes in adult postcardiac arrest comatose patients.Data ExtractionQuantitative data required for building a 2 × 2 contingency table were extracted, and study quality was assessed using standard criteria.Data SynthesisWe used the bivariate random-effects model to estimate the pooled sensitivity and specificity of standard pupillary light reflex or quantitative pupillary light reflex in predicting poor neurologic outcome during early (< 72 hr), middle (between 72 and 144 hr), and late (≧ 145 hr) postresuscitation periods, respectively. We included 39 studies involving 17,179 patients. For quantitative pupillary light reflex, the cut off points used in included studies to define absent pupillary light reflex ranged from 0% to 13% (median: 7%) and from zero to 2 (median: 2) for pupillary light reflex amplitude and Neurologic Pupil index, respectively. Late standard pupillary light reflex had the highest area under the receiver operating characteristic curve (0.98, 95% CI [CI], 0.97-0.99). For early standard pupillary light reflex, the area under the receiver operating characteristic curve was 0.80 (95% CI, 0.76-0.83), with a specificity of 0.91 (95% CI, 0.85-0.95). For early quantitative pupillary light reflex, the area under the receiver operating characteristic curve was 0.83 (95% CI, 0.79-0.86), with a specificity of 0.99 (95% CI, 0.91-1.00).ConclusionsTiming of pupillary light reflex examination may impact neuroprognostic accuracy. The highest prognostic performance was achieved with late standard pupillary light reflex. Early quantitative pupillary light reflex had a similar specificity to late standard pupillary light reflex and had better specificity than early standard pupillary light reflex. For postresuscitation comatose patients, early quantitative pupillary light reflex may substitute for early standard pupillary light reflex in the neurologic prognostication algorithm.Copyright © 2021 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.