• Int J Comput Assist Radiol Surg · Feb 2020

    A manifold learning regularization approach to enhance 3D CT image-based lung nodule classification.

    • Ying Ren, Min-Yu Tsai, Liyuan Chen, Jing Wang, Shulong Li, Yufei Liu, Xun Jia, and Chenyang Shen.
    • Department of Neurology, Heilongjiang Province Number III Hospital, Beian, 164000, Heilongjiang, China.
    • Int J Comput Assist Radiol Surg. 2020 Feb 1; 15 (2): 287-295.

    PurposeDiagnosis of lung cancer requires radiologists to review every lung nodule in CT images. Such a process can be very time-consuming, and the accuracy is affected by many factors, such as experience of radiologists and available diagnosis time. To address this problem, we proposed to develop a deep learning-based system to automatically classify benign and malignant lung nodules.MethodsThe proposed method automatically determines benignity or malignancy given the 3D CT image patch of a lung nodule to assist diagnosis process. Motivated by the fact that real structure among data is often embedded on a low-dimensional manifold, we developed a novel manifold regularized classification deep neural network (MRC-DNN) to perform classification directly based on the manifold representation of lung nodule images. The concise manifold representation revealing important data structure is expected to benefit the classification, while the manifold regularization enforces strong, but natural constraints on network training, preventing over-fitting.ResultsThe proposed method achieves accurate manifold learning with reconstruction error of ~ 30 HU on real lung nodule CT image data. In addition, the classification accuracy on testing data is 0.90 with sensitivity of 0.81 and specificity of 0.95, which outperforms state-of-the-art deep learning methods.ConclusionThe proposed MRC-DNN facilitates an accurate manifold learning approach for lung nodule classification based on 3D CT images. More importantly, MRC-DNN suggests a new and effective idea of enforcing regularization for network training, possessing the potential impact to a board range of applications.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…