• Biochemistry · Jun 1996

    Comparative Study

    A model for the T-antigen-induced structural alteration of the SV40 replication origin based upon experiments with specific probes for bent, straight, and unwound DNA.

    • F X Han and L H Hurley.
    • Drug Dynamics Institute, College of Pharmacy, University of Texas at Austin 78712-1074, USA.
    • Biochemistry. 1996 Jun 18; 35 (24): 7993-8001.

    AbstractThe T-antigen-induced structural changes of the SV40 replication origin were probed with three DNA-reactive antitumor agents: (+)-CC-1065, bizelesin, and pluramycin. (+)-CC-1065 is an N3 adenine minor groove alkylating agent that selectively reacts with AT-rich DNA sequences with a bent conformation; bizelesin also reacts with the minor groove of AT-rich sequences but is selective for a conformation; bizelesin also reacts with the minor groove of AT-rich sequences but is selective for a straight DNA conformation. Pluramycin is an intercalative guanine alkylator whose reactivity is increased by unwinding and decreased by compression of the minor and/or major grooves of DNA. We show that while binding of T-antigen reduced the ability of (+)-CC-1065 to alkylate the AT tract in the SV40 replication origin, it did not interfere with bizelesin modification of the same sequence. These unexpected results suggest that when T-antigen binds to the SV40 origin the AT tract is in a straight DNA conformation. High-resolution DNase I footprinting experiments indicate that at least three helically in-phase T-antigen binding sites exist in the GC box region located immediately downstream of the AT tract. The binding of T-antigen enhances the reactivity of (+)-CC-1065 to the two 5'-AGTTA(asterisk) (the asterisk indicates the covalent bonding site) drug modification sites in the GC box region, demonstrating that these sites are in a bent conformation. In contrast, T-antigen inhibited the reactivity of pluramycin at sequences within the GC box region that are known not to bind T-antigen. These data, in combination with the DNase I footprinting results, suggest that T-antigen binding induces a conformational change in the DNA that no longer favors pluramycin intercalation. Based on our results, we propose that T-antigen binds tightly to the upstream region of the AT tract of SV40 replication origin forming double hexamers. In the downstream region, binding of T-antigen to the helically in-phase sites in the GC box region induces DNA bending in the opposite direction of the natural AT tract bending, while simultaneously transforming the naturally bent AT tract DNA into a straight conformation.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…