• J Occup Environ Hyg · Feb 2021

    Investigation of the protection efficacy of face shields against aerosol cough droplets.

    • Ayala Ronen, Hadar Rotter, Shmuel Elisha, Sagi Sevilia, Batya Parizer, Nir Hafif, and Alon Manor.
    • Environmental Physics Department, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel.
    • J Occup Environ Hyg. 2021 Feb 1; 18 (2): 72-83.

    AbstractSimple plastic face shields have numerous practical advantages over regular surgical masks. In light of the spreading COVID-19 pandemic, the potential of face shields as a substitution for surgical masks was investigated. In order to determine the efficacy of the protective equipment we used a cough simulator. The protective equipment considered was placed on a manikin head that simulated human breathing. Concentration and size distribution of small particles that reached the manikin respiration pathways during the few tens of seconds following the cough event were monitored. Additionally, water sensitive papers were taped on the tested protective equipment and the manikin face. In the case of frontal exposure, for droplet diameter larger than 3 μm, the shield efficiency in blocking cough droplets was found to be comparable to that of regular surgical masks, with enhanced protection for portions of the face that the mask does not cover. Additionally, for finer particles, down to 0.3 µm diameter, a shield blocked about 10 times more fine particles than the surgical mask. When exposure from the side was considered, the performance of the shield was found to depend dramatically on its geometry. While a narrow shield allowed more droplets and aerosol to penetrate in comparison to a mask under the same configuration, a slightly wider shield significantly improved the performance. The source control potential of shields was also investigated. A shield, and alternatively, a surgical mask, were placed on the cough simulator, while the breathing simulator, situated 60 cm away in the jet direction, remained totally exposed. In both cases, no droplets or particles were found in the vicinity of the breathing simulator. Conducted experiments were limited to short time periods after expiratory events, and do not include longer time ranges associated with exposure to suspended aerosol. Thus, additional evidence regarding the risk posed by floating aerosol is needed to establish practical conclusions regarding actual transmittance reduction potential of face shields and surgical face masks.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…