• Med Phys · Jun 2019

    Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.

    • Nuo Tong, Shuiping Gou, Shuyuan Yang, Minsong Cao, and Ke Sheng.
    • Key Lab of Intelligent Perception and Image Understanding of Ministry of Education, Xidian University, Xi'an, Shaanxi, 710071, China.
    • Med Phys. 2019 Jun 1; 46 (6): 2669-2682.

    PurposeImage-guided radiotherapy provides images not only for patient positioning but also for online adaptive radiotherapy. Accurate delineation of organs-at-risk (OARs) on Head and Neck (H&N) CT and MR images is valuable to both initial treatment planning and adaptive planning, but manual contouring is laborious and inconsistent. A novel method based on the generative adversarial network (GAN) with shape constraint (SC-GAN) is developed for fully automated H&N OARs segmentation on CT and low-field MRI.Methods And MaterialA deep supervised fully convolutional DenseNet is employed as the segmentation network for voxel-wise prediction. A convolutional neural network (CNN)-based discriminator network is then utilized to correct predicted errors and image-level inconsistency between the prediction and ground truth. An additional shape representation loss between the prediction and ground truth in the latent shape space is integrated into the segmentation and adversarial loss functions to reduce false positivity and constrain the predicted shapes. The proposed segmentation method was first benchmarked on a public H&N CT database including 32 patients, and then on 25 0.35T MR images obtained from an MR-guided radiotherapy system. The OARs include brainstem, optical chiasm, larynx (MR only), mandible, pharynx (MR only), parotid glands (both left and right), optical nerves (both left and right), and submandibular glands (both left and right, CT only). The performance of the proposed SC-GAN was compared with GAN alone and GAN with the shape constraint (SC) but without the DenseNet (SC-GAN-ResNet) to quantify the contributions of shape constraint and DenseNet in the deep neural network segmentation.ResultsThe proposed SC-GAN slightly but consistently improve the segmentation accuracy on the benchmark H&N CT images compared with our previous deep segmentation network, which outperformed other published methods on the same or similar CT H&N dataset. On the low-field MR dataset, the following average Dice's indices were obtained using improved SC-GAN: 0.916 (brainstem), 0.589 (optical chiasm), 0.816 (mandible), 0.703 (optical nerves), 0.799 (larynx), 0.706 (pharynx), and 0.845 (parotid glands). The average surface distances ranged from 0.68 mm (brainstem) to 1.70 mm (larynx). The 95% surface distance ranged from 1.48 mm (left optical nerve) to 3.92 mm (larynx). Compared with CT, using 95% surface distance evaluation, the automated segmentation accuracy is higher on MR for the brainstem, optical chiasm, optical nerves and parotids, and lower for the mandible. The SC-GAN performance is superior to SC-GAN-ResNet, which is more accurate than GAN alone on both the CT and MR datasets. The segmentation time for one patient is 14 seconds using a single GPU.ConclusionThe performance of our previous shape constrained fully CNNs for H&N segmentation is further improved by incorporating GAN and DenseNet. With the novel segmentation method, we showed that the low-field MR images acquired on a MR-guided radiation radiotherapy system can support accurate and fully automated segmentation of both bony and soft tissue OARs for adaptive radiotherapy.© 2019 American Association of Physicists in Medicine.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.