-
- Gregg M Baranski, Michael D Offin, Ziad C Sifri, Ihab O Elhassan, Edward J Hannoush, Walter D Alzate, Pranela Rameshwar, David H Livingston, and Alicia M Mohr.
- Department of Surgery, Division of Trauma, University of Medicine and Dentistry of New Jersey (UMDNJ)-New Jersey Medical School, Newark, New Jersey 07103, USA.
- J. Surg. Res. 2011 Oct 1; 170 (2): 325-31.
BackgroundFollowing severe trauma, there is a profound elevation of catecholamine that is associated with a persistent anemic state. We have previously shown that β-blockade (βB) prevents erythroid growth suppression and decreases hematopoietic progenitor cell (HPC) mobilization following injury. Under normal conditions, granulocyte colony stimulating factor (G-CSF) triggers the activation of matrix metalloprotease-9 (MMP-9), leading to the egress of progenitor cells from the bone marrow (BM). When sustained, this depletion of BM cellularity may contribute to BM failure. This study seeks to determine if G-CSF plays a role in the βB protection of BM following trauma.MethodsMale Sprague-Dawley rats were subjected to either unilateral lung contusion (LC) ± βB, hemorrhagic shock (HS) ± βB, or both LC/HS ± βB. Propranolol (βB) was given immediately following resuscitation. Animals were sacrificed at 3 and 24 h and HPC mobilization was assessed by evaluating BM cellularity and flow cytometric analysis of peripheral blood for HPCs. The concentration of G-CSF and MMP-9 was measured in plasma by ELISA.ResultsBM cellularity is decreased at 3 h following LC, HS, and LC/HS. HS and LC/HS resulted in significant HPC mobilization in the peripheral blood. The addition of βB restored BM cellularity and reduced HPC mobilization. Three h following HS and LC/HS, plasma G-CSF levels more than double, however LC alone showed no change in G-CSF. βB significantly decreased G-CSF in both HS and LC/HS. Similarly, MMP-9 is elevated following LC/HS, and βB prevents this elevation (390 ± 100 pg/mL versus 275 ± 80 pg/mL).ConclusionβB protection of the BM following shock and injury may be due to reduced HPC mobilization and maintenance of BM cellularity. Following shock, there is an increase in plasma G-CSF and MMP-9, which is abrogated by βB and suggests a possible mechanism how βB decreases HPC mobilization thus preserving BM cellularity. In contrast, βB protection of BM following LC is not mediated by G-CSF. Therefore, the mechanism of progenitor cell mobilization from the BM is dependent on the type of injury.Published by Elsevier Inc.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.