-
- Di Wang, Qingchen Guo, Yu Zhou, Zheng Xu, Su-Wan Hu, Xiang-Xi Kong, Yu-Mei Yu, Jun-Xia Yang, Hongxing Zhang, Hai-Lei Ding, and Jun-Li Cao.
- Anesthesiology. 2021 Sep 1; 135 (3): 463-481.
BackgroundThe γ-aminobutyric acid-mediated (GABAergic) inhibitory system in the brain is critical for regulation of sleep-wake and general anesthesia. The lateral septum contains mainly GABAergic neurons, being cytoarchitectonically divided into the dorsal, intermediate, and ventral parts. This study hypothesized that GABAergic neurons of the lateral septum participate in the control of wakefulness and promote recovery from anesthesia.MethodsBy employing fiber photometry, chemogenetic and optogenetic neuronal manipulations, anterograde tracing, in vivo electrophysiology, and electroencephalogram/electromyography recordings in adult male mice, the authors measured the role of lateral septum GABAergic neurons to the control of sleep-wake transition and anesthesia emergence and the corresponding neuron circuits in arousal and emergence control.ResultsThe GABAergic neurons of the lateral septum exhibited high activities during the awake state by in vivo fiber photometry recordings (awake vs. non-rapid eye movement sleep: 3.3 ± 1.4% vs. -1.3 ± 1.2%, P < 0.001, n = 7 mice/group; awake vs. anesthesia: 2.6 ± 1.2% vs. -1.3 ± 0.8%, P < 0.001, n = 7 mice/group). Using chemogenetic stimulation of lateral septum GABAergic neurons resulted in a 100.5% increase in wakefulness and a 51.2% reduction in non-rapid eye movement sleep. Optogenetic activation of these GABAergic neurons promoted wakefulness from sleep (median [25th, 75th percentiles]: 153.0 [115.9, 179.7] s to 4.0 [3.4, 4.6] s, P = 0.009, n = 5 mice/group) and accelerated emergence from isoflurane anesthesia (514.4 ± 122.2 s vs. 226.5 ± 53.3 s, P < 0.001, n = 8 mice/group). Furthermore, the authors demonstrated that the lateral septum GABAergic neurons send 70.7% (228 of 323 cells) of monosynaptic projections to the ventral tegmental area GABAergic neurons, preferentially inhibiting their activities and thus regulating wakefulness and isoflurane anesthesia depth.ConclusionsThe results uncover a fundamental role of the lateral septum GABAergic neurons and their circuit in maintaining awake state and promoting general anesthesia emergence time.Editor’s PerspectiveCopyright © 2021, the American Society of Anesthesiologists. All Rights Reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.