-
- Farbod N Rahaghi, Pietro Nardelli, Eileen Harder, Inderjit Singh, Sánchez-FerreroGonzalo VegasGVDepartment of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA., James C Ross, Rubén San José Estépar, Samuel Y Ash, Andetta R Hunsaker, Bradley A Maron, Jane A Leopold, Aaron B Waxman, San José EstéparRaúlRDepartment of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA., and George R Washko.
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA. Electronic address: frahaghi@bwh.harvard.edu.
- Chest. 2021 Dec 1; 160 (6): 2220-2231.
BackgroundPulmonary hypertension is a heterogeneous disease, and a significant portion of patients at risk for it have CT imaging available. Advanced automated processing techniques could be leveraged for early detection, screening, and development of quantitative phenotypes. Pruning and vascular tortuosity have been previously described in pulmonary arterial hypertension (PAH), but the extent of these phenomena in arterial vs venous pulmonary vasculature and in exercise pulmonary hypertension (ePH) have not been described.Research QuestionWhat are the arterial and venous manifestations of pruning and vascular tortuosity using CT imaging in PAH, and do they also occur in ePH?Study Design And MethodsA cohort of patients with PAH and ePH and control subjects with available CT angiograms were retrospectively identified to examine the differential arterial and venous presence of pruning and tortuosity in patients with precapillary pulmonary hypertension not confounded by lung or thromboembolic disease. The pulmonary vasculature was reconstructed, and an artificial intelligence method was used to separate arteries and veins and to compute arterial and venous vascular volumes and tortuosity.ResultsA total of 42 patients with PAH, 12 patients with ePH, and 37 control subjects were identified. There was relatively lower (median [interquartile range]) arterial small vessel volume in subjects with PAH (PAH 14.7 [11.7-16.5; P < .0001]) vs control subjects (16.9 [15.6-19.2]) and venous small vessel volume in subjects with PAH and ePH (PAH 8.0 [6.5-9.6; P < .0001]; ePH, 7.8 [7.5-11.4; P = .004]) vs control subjects (11.5 [10.6-12.2]). Higher large arterial volume, however, was only observed in the pulmonary arteries (PAH 17.1 [13.6-23.4; P < .0001] vs control subjects 11.4 [8.1-15.4]). Similarly, tortuosity was higher in the pulmonary arteries in the PAH group (PAH 3.5 [3.3-3.6; P = .0002] vs control 3.2 [3.2-3.3]).InterpretationLower small distal pulmonary vascular volume, higher proximal arterial volume, and higher arterial tortuosity were observed in PAH. These can be quantified by using automated techniques from clinically acquired CT scans of patients with ePH and resting PAH.Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.