• Ultrasound Obstet Gynecol · Mar 2020

    Development and validation of predictive models for QUiPP App v.2: tool for predicting preterm birth in asymptomatic high-risk women.

    • H A Watson, P T Seed, J Carter, N L Hezelgrave, K Kuhrt, R M Tribe, and A H Shennan.
    • Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK.
    • Ultrasound Obstet Gynecol. 2020 Mar 1; 55 (3): 348-356.

    ObjectivesAccurate mid-pregnancy prediction of spontaneous preterm birth (sPTB) is essential to ensure appropriate surveillance of high-risk women. Advancing the QUiPP App prototype, QUiPP App v.2 aimed to provide individualized risk of delivery based on cervical length (CL), quantitative fetal fibronectin (qfFN) or both tests combined, taking into account further risk factors, such as multiple pregnancy. Here we report development of the QUiPP App v.2 predictive models for use in asymptomatic high-risk women, and validation using a distinct dataset in order to confirm the accuracy and transportability of the QUiPP App, overall and within specific clinically relevant time frames.MethodsThis was a prospective secondary analysis of data of asymptomatic women at high risk of sPTB recruited in 13 UK preterm birth clinics. Women were offered longitudinal qfFN testing every 2-4 weeks and/or transvaginal ultrasound CL measurement between 18 + 0 and 36 + 6 weeks' gestation. A total of 1803 women (3878 visits) were included in the training set and 904 women (1400 visits) in the validation set. Prediction models were created based on the training set for use in three groups: patients with risk factors for sPTB and CL measurement alone, with risk factors for sPTB and qfFN measurement alone, and those with risk factors for sPTB and both CL and qfFN measurements. Survival analysis was used to identify the significant predictors of sPTB, and parametric structures for survival models were compared and the best selected. The estimated overall probability of delivery before six clinically important time points (< 30, < 34 and < 37 weeks' gestation and within 1, 2 and 4 weeks after testing) was calculated for each woman and analyzed as a predictive test for the actual occurrence of each event. This allowed receiver-operating-characteristics curves to be plotted, and areas under the curve (AUC) to be calculated. Calibration was performed to measure the agreement between expected and observed outcomes.ResultsAll three algorithms demonstrated high accuracy for the prediction of sPTB at < 30, < 34 and < 37 weeks' gestation and within 1, 2 and 4 weeks of testing, with AUCs between 0.75 and 0.90 for the use of qfFN and CL combined, between 0.68 and 0.90 for qfFN alone, and between 0.71 and 0.87 for CL alone. The differences between the three algorithms were not statistically significant. Calibration confirmed no significant differences between expected and observed rates of sPTB within 4 weeks and a slight overestimation of risk with the use of CL measurement between 22 + 0 and 25 + 6 weeks' gestation.ConclusionsThe QUiPP App v.2 is a highly accurate prediction tool for sPTB that is based on a unique combination of biomarkers, symptoms and statistical algorithms. It can be used reliably in the context of communicating to patients the risk of sPTB. Whilst further work is required to determine its role in identifying women requiring prophylactic interventions, it is a reliable and convenient screening tool for planning follow-up or hospitalization for high-risk women. Copyright © 2019 ISUOG. Published by John Wiley & Sons Ltd.Copyright © 2019 ISUOG. Published by John Wiley & Sons Ltd.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.