-
- Bo-Yi Yang, Li-Wen Hu, Bin Jalaludin, Luke D Knibbs, Iana Markevych, Joachim Heinrich, Michael S Bloom, Lidia Morawska, Shao Lin, Pasi Jalava, Marjut Roponen, Meng Gao, Duo-Hong Chen, Yang Zhou, Hong-Yao Yu, Ru-Qing Liu, Xiao-Wen Zeng, Mohammed Zeeshan, Yuming Guo, Yunjiang Yu, and Guang-Hui Dong.
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, Sun Yat-sen University School of Public Health, Guangzhou, China.
- JAMA Netw Open. 2020 Sep 1; 3 (9): e2017507.
ImportanceLiving in areas with more vegetation (referred to as residential greenness) may be associated with cardiovascular disease (CVD), but little data are available from low- and middle-income countries. In addition, it remains unclear whether the presence of cardiometabolic disorders modifies or mediates the association between residential greenness and CVD.ObjectiveTo evaluate the associations between residential greenness, cardiometabolic disorders, and CVD prevalence among adults in China.Design, Setting, And ParticipantsThis analysis was performed as part of the 33 Communities Chinese Health Study, a large population-based cross-sectional study that was conducted in 33 communities (ranging from 0.25-0.64 km2) in 3 cities within the Liaoning province of northeastern China between April 1 and December 31, 2009. Participants included adults aged 18 to 74 years who had resided in the study area for 5 years or more. Greenness levels surrounding each participant's residential community were assessed using the normalized difference vegetation index and the soil-adjusted vegetation index from 2010. Lifetime CVD status (including myocardial infarction, heart failure, coronary heart disease, cerebral thrombosis, cerebral hemorrhage, cerebral embolism, and subarachnoid hemorrhage) was defined as a self-report of a physician diagnosis of CVD at the time of the survey. Cardiometabolic disorders, including hypertension, diabetes, dyslipidemia, and overweight or obese status, were measured and defined clinically. Generalized linear mixed models were used to evaluate the association between residential greenness levels and CVD prevalence. A 3-way decomposition method was used to explore whether the presence of cardiometabolic disorders mediated or modified the association between residential greenness and CVD. Data were analyzed from October 10 to May 30, 2020.Main Outcomes And MeasuresLifetime CVD status, the presence of cardiometabolic disorders, and residential greenness level.ResultsAmong 24 845 participants, the mean (SD) age was 45.6 (13.3) years, and 12 661 participants (51.0%) were men. A total of 1006 participants (4.1%) reported having a diagnosis of CVD. An interquartile range (1-IQR) increase in the normalized difference vegetation index within 500 m of a community was associated with a 27% lower likelihood (odds ratio [OR], 0.73; 95% CI, 0.65-0.83; P < .001) of CVD prevalence, and an IQR increase in the soil-adjusted vegetation index within 500 m of a community was associated with a 26% lower likelihood (OR, 0.74; 95% CI, 0.66-0.84; P < .001) of CVD prevalence. The presence of cardiometabolic disorders was found to mediate the association between residential greenness and CVD, with mediation effects of 4.5% for hypertension, 4.1% for type 2 diabetes, 3.1% for overweight or obese status, 12.7% for hypercholesterolemia, 8.7% for hypertriglyceridemia, and 11.1% for high low-density lipoprotein cholesterol levels.Conclusions And RelevanceIn this cross-sectional study, higher residential greenness levels were associated with lower CVD prevalence, and this association may be partially mediated by the presence of cardiometabolic disorders. Further studies, preferably longitudinal, are warranted to confirm these findings.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.