• Magn Reson Med · Jul 2020

    Accelerated spin-echo functional MRI using multisection excitation by simultaneous spin-echo interleaving (MESSI) with complex-encoded generalized slice dithered enhanced resolution (cgSlider) simultaneous multislice echo-planar imaging.

    • SoHyun Han, Congyu Liao, Mary Kate Manhard, Daniel Joseph Park, Berkin Bilgic, Merlin J Fair, Fuyixue Wang, Anna I Blazejewska, William A Grissom, Jonathan R Polimeni, and Kawin Setsompop.
    • Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.
    • Magn Reson Med. 2020 Jul 1; 84 (1): 206-220.

    PurposeSpin-echo functional MRI (SE-fMRI) has the potential to improve spatial specificity when compared with gradient-echo fMRI. However, high spatiotemporal resolution SE-fMRI with large slice-coverage is challenging as SE-fMRI requires a long echo time to generate blood oxygenation level-dependent (BOLD) contrast, leading to long repetition times. The aim of this work is to develop an acquisition method that enhances the slice-coverage of SE-fMRI at high spatiotemporal resolution.Theory And MethodsAn acquisition scheme was developed entitled multisection excitation by simultaneous spin-echo interleaving (MESSI) with complex-encoded generalized slice dithered enhanced resolution (cgSlider). MESSI uses the dead-time during the long echo time by interleaving the excitation and readout of 2 slices to enable 2× slice-acceleration, while cgSlider uses the stable temporal background phase in SE-fMRI to encode/decode 2 adjacent slices simultaneously with a "phase-constrained" reconstruction method. The proposed cgSlider-MESSI was also combined with simultaneous multislice (SMS) to achieve further slice-acceleration. This combined approach was used to achieve 1.5-mm isotropic whole-brain SE-fMRI with a temporal resolution of 1.5 s and was evaluated using sensory stimulation and breath-hold tasks at 3T.ResultsCompared with conventional SE-SMS, cgSlider-MESSI-SMS provides 4-fold increase in slice-coverage for the same repetition time, with comparable temporal signal-to-noise ratio. Corresponding fMRI activation from cgSlider-MESSI-SMS for both fMRI tasks were consistent with those from conventional SE-SMS. Overall, cgSlider-MESSI-SMS achieved a 32× encoding-acceleration by combining Rinplane × MB × cgSlider × MESSI = 4 × 2 × 2 × 2.ConclusionHigh-quality, high-resolution whole-brain SE-fMRI was acquired at a short repetition time using cgSlider-MESSI-SMS. This method should be beneficial for high spatiotemporal resolution SE-fMRI studies requiring whole-brain coverage.© 2019 International Society for Magnetic Resonance in Medicine.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.